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Thermoelastic Fields of a
Functionally Graded Coated
Inhomogeneity With
Sliding/Perfect Interfaces
The determination of the thermo-mechanical stress field in and around a spherical/
cylindrical inhomogeneity surrounded by a functionally graded (FG) coating, which in
turn is embedded in an infinite medium, is of interest. The present work, in the frame work
of Boussinesq/Papkovich-Neuber displacement potentials method, discovers the potential
functions by which not only the relevant boundary value problems (BVPs) in the litera-
ture, but also the more complex problem of the coated inhomogeneities with FG coating
and sliding interfaces can be treated in a unified manner. The thermo-elastic fields per-
tinent to the inhomogeneities with multiple homogeneous coatings and various combina-
tions of perfect/sliding interfaces can be computed exactly. Moreover, when the coatings
are inhomogeneous, as long as the spatial variation of the thermo-elastic properties of
the transition layer is describable by a piecewise continuous function with a finite num-
ber of jumps, an accurate solution can be obtained. The influence of interface conditions,
stiffness of the core, spatial distributions of thermal expansion coefficient and shear
modulus of FG coating, and loading condition on the stress field will be examined.
�DOI: 10.1115/1.2200655�

1 Introduction
In this paper, an inhomogeneity system is referred to an infinite

medium containing a sub-domain of different material properties.
If the hoop displacement along the interface between the inhomo-
geneity and its surrounding medium is discontinuous, it is referred
to as sliding inhomogeneity. The thermo-elastic fields in the
neighborhood of a single spherical/cylindrical inhomogeneity sys-
tem with different combination of perfect / sliding interfaces are
of primary interest in composite materials. In fabrication of such
materials, application of coating on reinforcement particles serves
to improve a number of desired properties, e.g., mechanical
strength; electrical conductivity; reduction of thermal residual
stresses, and/or providing a buffer zone to prevent chemical at-
tacks. It is due to their prominent wide engineering usage that
increasingly more attentions have been turned to coated reinforced
composites during the past two decades. The present work aims to
study the thermo-mechanical stress field in the vicinity of a func-
tionally graded coated spherical/cylindrical inhomogeneity system
with different combination of perfect/sliding interfaces subjected
to both a uniform temperature change and a uniform far-field me-
chanical loading. The high temperature performance of some al-
loys can be considerably enhanced by addition of certain rein-
forcements. The optimum behavior may be achievable when the
thermal expansion mismatch between the matrix and the rein-
forcements is very small. It is a well-known phenomenon that, the
large thermal expansion coefficient mismatch at the matrix-fiber
boundary gives rise to high tensile residual stresses there; as a
result the matrix-fiber interface is a preferred site for crack initia-
tion in the matrix during the cool-down processes. Usage of coat-

ing made of an appropriate functionally graded material �FGM�
serves to eliminate the problem of mismatch at the matrix-coating
and coating-particle interfaces. During fabrication processes of
FGMs, their microstructure and specific properties are tailored to
meet certain spatial variations. In the context of the present work,
the coating is made of FGM, so that its thermo-elastic properties
match those of matrix and particle at the corresponding interfaces
and vary smoothly in between. In some composites, such as con-
crete, a transition zone between the cement paste and aggregates
may be created by chemical processes.

In the literature, most of the previous studies on the subject are
concerned with the effective thermo-elastic behavior of compos-
ites rather than seeking the actual distribution of the field quanti-
ties in and around a coated inhomogeneity. A fairly thorough lit-
erature on the subject up to 1996 is available in the review papers
by Mura �1� and Mura et al. �2�. Therefore, only the studies which
are closely related to the present developments are noted herein.
Some of the treatments pertinent to the cylindrical and spherical
inhomogeneities with homogeneous transition zone follow the
work of Christensen and Lo �3�, whose solution is the extension of
the work of Love �4� on the spherical inhomogeneity with the
perfect inhomogeneity-matrix interface. The contributions which
follow this school of thought consider homogeneous coating in
the absence of sliding interfaces; see, for example, �5,6�. Herve
and Zaoui �5� proposed an �n+1�-phase model �n-phase inclusion
embedded in an infinite matrix� with perfect interfaces to estimate
the effective bulk and shear moduli of an isotropic composite
material. It should also be noted that some of the existing theories,
in addition to the limitations of homogeneous coating and perfect
interfaces, are valid for thin coatings only; see, for example, Ben-
veniste et al. �6�. Benveniste et al. approximated the local fields in
a coated cylindrical inhomogeneity system under the thermo-
elastic loading and gave the effective thermo-mechanical proper-
ties of composite cylinder assemblage. On the other hand, the
shortcomings of the existing treatments associated to the cases
where the transition zone is inhomogeneous are: �1� The sliding
interfaces are ruled out; �2� the composition of the inhomoge-
neous coating is limited to a very specific distribution; and �3� the

1Author to whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received June 2, 2005; final manuscript
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paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of
Applied Mechanics, Department of Mechanical and Environmental Engineering,
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accepted until four months after final publication of the paper itself in the ASME
JOURNAL OF APPLIED MECHANICS.

Journal of Applied Mechanics MAY 2007, Vol. 74 / 389Copyright © 2007 by ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



solutions are commonly in the form of infinite series as opposed
to exact closed-form. Using the Frobenius series solution, Lutz
and Ferrari �7� and Lutz and Zimmerman �8� presented the solu-
tion to the problem of an infinite body containing a spherical
particle with an inter-phase whose material properties vary
smoothly with radius outside the particle. Furthermore, Zimmer-
man and Lutz �9� conducted a similar analysis for a cylindrical
inhomogeneity with circular cross section subjected to a uniform
heating. Mikata �10� modeled continuous fiber composites with a
linearly varying inter-phase under axisymmetric thermo-
mechanical loadings by four concentric long circular cylinders. It
should be emphasized that the above referenced studies �7–10�
address a special continuous variation of the elastic moduli within
the interfacial zone so that an infinite series solution is possible.
Moreover, these solutions have focused on the treatment of perfect
interfaces only. Jayaraman and Reifsnider �11� used the three
phase concentric cylinder assemblage model to study the effect of
inter-phase Young’s modulus variations on the local stress state.
They considered perfect bonding between the interfaces and as-
sumed that the Poisson’s ratio and the coefficient of thermal ex-
pansion are constant within the interfacial zone. The extension of
the above study to investigate the effect of an inhomogeneous
interphase on the elastic constants of unidirectional fiber rein-
forced composites was done by Jasiuk and Kouider �12�.

Following the work of Sadowsky and Sternberg �13�, Mikata
and Taya �14,15� determined the mechanical/thermal stress field in
a coated short fiber embedded in an infinite body. They modeled
the coated fiber by two confocal prolate spheroids, and used
Boussinesq-Sadowsky potential functions to end up with an infi-
nite series solution for the corresponding problem. Mura et al.
�16� applied the same approach to find the stress field of a sliding
prolate spheroidal inclusion with nonshear eigenstrain. In that pa-
per, they also considered the case of a prolate spheroidal inhomo-
geneity under uniform far-field tension. In an earlier study by
Ghahremani �17� who aimed to study the effect of grain boundary
sliding on anelasticity of polycrystalline materials, he has ob-
tained the stress fields of a sliding spherical inhomogeneity under
uniform tension at infinity. In this, Ghahremani extended the work
of Lur’e �18� on the spherical inclusion with a perfect inclusion-
matrix interface, and did not consider coating.

Using the axisymmetric elasticity solution of spherical regions
given by Lur’e �18�, Hashin �19� studied the effect of imperfect
interface conditions on the stress fields in and around an inclusion.
Hashin �20� has pointed out that the imperfect interface bond is
often used to model a very compliant thin elastic homogeneous
transition layer. On this basis, Hashin �20� estimated the effective
elastic moduli of a unidirectional coated fiber composite. In seek-
ing the Eshelby’s tensor associated with an inclusion having im-
perfect interface, the work of Gao �21� should be mentioned. Gao
considered the simple two-dimensional circular inclusion for
which the Airy’s stress functions are readily available. In this,
most of the effort has been expended in calculation of the perti-
nent Eshelby’s tensor.

The present paper, does not seek the infinite series solution, but
rather in the frame work of Boussinesq/Papkovich-Neuber dis-
placement potentials method offers a finite number of thermo-
mechanical potential functions appropriate for the exact closed-
form solution of the boundary value problem �BVP� of an n-phase
cylindrical/spherical inhomogeneity system. An interesting appli-
cation of the findings is to determine the thermo-mechanical stress
field in a cylindrical/spherical inhomogeneity with an FG coating
of arbitrary thickness, in which any of the desired interfaces may
experience sliding. The influence of matrix-coating/coating-fiber
interface condition, stiffness of the core inhomogeneity; thermal/
mechanical loading; and spatial variation of the properties of
FGM on the stress distribution will be given. The problem of
functionally graded pressure vessels considered by Tutuncu and
Ozturk �22�, which is a simple case encompassed by the present
theory is re-examined, and on the present groundwork the limita-

tions posed by their approach are relaxed. Also, the error encoun-
tered in the paper of Tutuncu and Ozturk �22� for the expression
of hoop stress is pointed out in this work, and its correct form is
given in Appendix C.

2 Theoretical Background
A brief formulation for the well-posed boundary value problem,

seeking quasi-static elastic fields due to instantaneous temperature
distribution T�x� is given in the followings. In the presence of
body forces �bi, the displacement equations of equilibrium for
isotropic materials read

�� + ��uk,ki + �ui,kk = − �bi + ��3� + 2��T,i �1�

where ui�s , i=1,2 ,3 are the components of displacement filed, �
and � are Lame’ constants, and � is the coefficient of thermal
expansion �CTE�. Assuming constant thermoelastic properties,
one may make use of the Galerkin vector, Gi�x�

2�ui = 2�1 − ��Gi,kk − Gk,ki + 2�ui
T �2�

where � is the Poisson’s ratio and ui
T is the displacement field due

to a uniform temperature change in the medium.
Upon substitution into �1� and introducing the functions �i�x�

and ��x�, �Papkovich �1932�, Neuber �1934��, one obtains

2�ui = �3 − 4���i − xk�k,i − �,i + 2�ui
T �3�

where

�i = 1
2�2Gi �4�

� = Gk,k − xk�k �5�

Gi,llj j =
− �bi + ��3� + 2��T,i

1 − �
�6�

It is observed that, for a uniform temperature change and in the
absence of body forces, �i and � are harmonic functions. These
conditions in conjunction with the Boussinesq’s �1885� choice of
functions

� = 	, �1 = 0, �2 = 0, �3 = − 
 �7�
Eq. �3� becomes

2�ui = 	,i + x3
,i − �3i�3 − 4��
 + 2�ui
T �8�

As long as the distributions of the thermo-elastic properties of
the material within the interfacial zone are describable by piece-
wise continuous functions with a finite number of jumps, the
present theory is applicable. For the sake of demonstration, and
conveying the fundamental concepts, two different variations of
thermo-elastic properties of the transition layer, namely the expo-
nential and power law distributions, which are of great value in
applications are considered. The effects of these functions on the
elastic field are explored in the results and discussion section. Let
�c�r� denote the shear modulus, �c�r� or the coefficient of thermal
expansion, �c�r� within the transition zone; it is assumed that
�c�r� obeys either the exponential form

�c�r� = � f +
r − rf

rm − rf
��m − � f�er−rm, rf 
 r 
 rm �9�

or the power law

�c�r� = �m + �� f − �m�� r − rm

rf − rm
��

, rf 
 r 
 rm �10�

where the superscripts f and m over � mean that the quantity is
pertinent to the fiber �core inhomogeneity� and matrix, respec-
tively. The distance r measures from the center of the inhomoge-
neity. It is seen that at the inhomogeneity-coating interface
�c�rf�=� f and at the coating-matrix interface, �c�rm�=�m. In rela-
tion �10�, the power � may take on any real numbers.
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The exact solution of the governing equation �1� with variable
coefficients stemming from expression �9� or �10� is unknown. It
is shown in this paper that, under uniform thermo-mechanical
loading the thermoelastic fields disturbed by FG coated
cylindrical/spherical inhomogeneities with sliding interfaces can
be solved accurately.

3 Formulation for a Two-Dimensional FG Coated Cy-
lindrical Inhomogeneity

Suppose the FG coated cylindrical inhomogeneity system
shown in Fig. 1 undergoes both a uniform change in temperature
�T and a uniform tension, �T in x1-direction. Having the uniaxial
loading solution, the elastic field of the problem under a uniform
hydrostatic or shear loading can be obtained from the superposi-
tion principle. Depending on the matrix-coating and coating-fiber
interface conditions, four different configurations are possible: �1�
Perfect bonding between matrix-coating and coating-fiber inter-
faces; �2� perfect bonding between the matrix-coating interface
and free sliding between the coating-fiber interface; �3� free slid-
ing between the matrix-coating interface and perfectly bonded
coating-fiber interface; and �4� free sliding for both interfaces. For
abbreviation, configurations �1�–�4� are referred to as PP, PS, SP,
and SS in the subsequences. The approach to the determination of
the elastic fields disturbed by such an inhomogeneity is to subdi-
vide the coating into N thin enough layers. The continuity condi-
tions at the Kth and �K+1�st interface, r=Rk require that

�rr
�K��Rk� = �rr

�K+1��Rk�, �r�
�K��Rk� = �r�

�K+1��Rk�

ur
�K��Rk� = ur

�K+1��Rk�, u�
�K��Rk� = u�

�K+1��Rk� �11�

Moreover, within the Kth phase the displacement field is given in
terms of the displacement potentials via

2�̄Kum
�K� = �3 − 4���m

�K� − xl�l,m
�K� − �,m

�K�

+ 2�̄K�̄K�Txm, no sum on K,

l,m = 1,2, and K = 1,2, . . . ,N �12�

where the superscript �K� indicates the Kth phase. Without loss of
generality, the Poisson’s ratio is assumed to be constant not only
for the Kth phase but throughout the entire domain. In relation
�12�, �̄K and �̄K are the respective values of the shear modulus
and coefficient of thermal expansion at the midpoint of the Kth
layer. It should be emphasized that, aside from this estimation the
remainder of treatment is exact. As a result thinner layers lead to
more accurate solution.

The layers are numbered in increasing order from 1 to N,
phases 1 and N being the layers next to the matrix and fiber,
respectively. The elastic field is obtained from the superposition of
the elastic fields associated with disturbed and undisturbed fields.
The functions given in �12� correspond to the disturbance caused
by the presence of the inhomogeneity. The appropriate such po-
tentials for the given boundary value problem are

��m� = am log r + cm

1

r2 cos 2�

�1
�m� = fmr cos �, �2

�m� = fmr sin �

��K� = aK log r + cK

1

r2 cos 2�

�1
�K� = fKr cos � + gKr3 cos 3� ,

�2
�K� = fKr sin � + gKr3 sin 3�

, K = 1,2, . . . ,N , �13a�

�1
�f� = gfr

3 cos 3�, �2
�f� = gfr

3 sin 3� ,

and the potentials for the undisturbed field are

V�m� = dm

�1 − ��
2

r2 + emr2 cos 2�

V�K� = dK

�1 − ��
2

r2 + eKr2 cos 2�, K = 1,2, . . . ,N

V�f� = df

�1 − ��
2

r2 + efr
2 cos 2� �13b�

where m and f in �13� denote matrix and fiber, respectively, and
�=3−4� for plane strain, and �= �3−�� / �1+�� for plane stress.
Hence,

2�mur
�m� = −

am

r
+

2cm

r3 cos 2� + dm�� − 1�r − 2emr cos 2�

+ fm

1 + �

r
cos 2� + 2�m�mr�T

2�mu�
�m� =

2cm

r3 sin 2� + 2emr sin 2� + fm

1 − �

r
sin 2�

�rr
�m� =

am

r2 −
6cm

r4 cos 2� + 2dm − 2em cos 2� −
4fm

r2 cos 2�

�r�
�m� = −

6cm

r4 sin 2� + 2em sin 2� −
2fm

r2 sin 2�

2�̄Kur
�K� = −

aK

r
+

2cK

r3 cos 2� + dK�� − 1�r − 2eKr cos 2�

+ fK

1 + �

r
cos 2� + gK�� − 3�r3 cos 2� + 2�̄K�̄Kr�T

2�̄Ku�
�K� =

2cK

r3 sin 2� + 2eKr sin 2� + fK

1 − �

r
sin 2�

+ gK�� + 3�r3 sin 2�

Fig. 1 „a… Topology of an FG coated cylindrical inhomogeneity
system „b… A typical variation of thermal/mechanical properties
of an FG coated inhomogeneity system
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�rr
�K� =

aK

r2 −
6cK

r4 cos 2� + 2dK − 2ek cos 2� −
4fK

r2 cos 2�

�r�
�K� = −

6cK

r4 sin 2� + 2eK sin 2� −
2fK

r2 sin 2� + 6gKr2 sin 2�

2� fur
�f� = df�� − 1�r − 2efr cos 2� + gf�� − 3�r3 cos 2� + 2� f� fr�T

2� fu�
�f� = 2efr sin 2� + gf�� + 3�r3 sin 2�

�rr
�f� = 2df − 2ef cos 2�

�r�
�f� = 2ef sin 2� + 6gfr

2 sin 2� �14�
The boundary conditions at matrix-coating and coating-fiber inter-
face can be written as

�rr
�m��a� = �rr

�1��a�, ur
�m��a� = ur

�1��a�

�rr
�N��b� = �rr

�f��b�, ur
�N��b� = ur

�f��b� �15�
and

�r�
�m��a� = �r�

�1��a�, u�
�m��a� = u�

�1��a�

�r�
�N��b� = �r�

�f��b�, u�
�N��b� = u�

�f��b� �16a�

if all interfaces remain perfect,

�r�
�m��a� = �r�

�1��a�, u�
�m��a� = u�

�1��a�

�r�
�N��b� = �r�

�f��b� = 0 �16b�

if coating-fiber interface slips,

�r�
�m��a� = �r�

�1��a� = 0

�r�
�N��b� = �r�

�f��b�, u�
�N��b� = u�

�f��b� �16c�

if matrix-coating interface slips,

�r�
�m��a� = �r�

�1��a� = 0

�r�
�N��b� = �r�

�f��b� = 0 �16d�
if both interfaces slip. As it is outlined in Appendix A, following
a systematic procedure, the unknown constants for each phase can
be obtained by imposing the appropriate constraints, interface and
boundary conditions.

4 Formulation for a Three-Dimensional FG Coated
Spherical Inhomogeneity

The geometry of a FG coated spherical inhomogeneity system
is shown in Fig. 2. The system is subjected to uniform temperature
change, �T and far-field uniform tension, T in x3-direction. Fol-
lowing the methodology explained in the previous section, the

coating is divided into N thin layers. The displacement field for a
typical layer, say the Kth phase may be written as

2�̄Kui
�K� = 	,i

�K� + x3
,i
�K� − �3i�3 − 4��
�K�

+ 2�̄K�̄K�Txm, no sum on K,

i = 1,2,3, and K = 1,2, . . . ,N �17�

where all the ingredients have been defined in the previous sec-
tions. In lieu of the above mentioned applied loadings and conti-
nuity conditions �11� the legitimate displacement potentials are

	�m� = am

1

r
+ bm

1

r3 p2�s� + dmr2p2�s�


�m� = cm

1

r2 p1�s� + emrp1�s�

	�K� = aK

1

r
+ bK

1

r3 p2�s� + dKr2p2�s� + hKr4p4�s�


�K� = cK

1

r2 p1�s� + eKrp1�s� + fKr3p3�s� �18�

	�f� = dfr
2p2�s� + hfr

4p4�s�


�f� = efrp1�s� + f fr
3p3�s�

where s=cos � and pn�s� is the Legendre function. Also r2p2�s�
and rp1�s� are the potentials for the undisturbed field. From Eq.
�18�

�rr
�m� = am

2

r3 + bm

12

r5 P2�s� + cm

2

r3�s�5 − 2��P1�s� − ��1 − s2�P1��s��

+ dm�2P2�s�� − em�2�1 − ��sP1�s� + 2��1 − s2�P1��s��

�r�
�m� = �bm� 4

r5 P2��s�� + cm

2

r3�s�2 − ��P1��s� − �1 − 2��P1�s��

− dmP2��s� + em�1 − 2���sP1��s� + P1�s���	1 − s2

2�mur
�m� = am

− 1

r2 − bm

3

r4 P2�s� + cm

s�4� − 5�
r2 P1�s� + + 2dmrP2�s�

− 2emrs�1 − 2��P1�s� + 2�m�mr�T

2�mu�
�m� = �bm

− 1

r4 P2��s� − cm

1

r2�sP1��s� − �3 − 4��P1�s��

− dmrP2��s� − emr�sP1��s� − �3 − 4��P1�s���	1 − s2

�rr
�K� = aK

2

r3 + bK

12

r5 P2�s� + cK

2

r3�s�5 − 2��P1�s� − ��1 − s2�P1��s��

+ 2dKP2�s� − 2eK��1 − ��sP1�s� + ��1 − s2�P1��s��
+ 12fKr2P4�s� + 2hKr2�3�sP3�s� − ��1 − s2�P3��s��

�r�
�K� = �bK� 4

r5 P2��s�� + cK

2

r3�s�2 − ��P1��s� − �1 − 2��P1�s��

− dKP2��s� + eK�1 − 2���sP1��s� + P1�s�� − 3fKr2P4��s�

− hKr2��1 + 2��sP3��s� − 3�1 − 2��P3�s���	1 − s2

Fig. 2 Topology of a spherical inhomogeneity system
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2�̄Kur
�K� = aK

− 1

r2 − bK

3

r4 P2�s� + cK

s�− 5 + 4��
r2 P1�s� + 2dKrP2�s�

− 2eKrs�1 − 2��P1�s� + 4fKr3P4�s� + 4hKs�r3P3�s�

+ 2�̄K�̄Kr�T

2�̄Ku�
�K� = �bK

− 1

r4 P2��s� − cK

1

r2�sP1��s� − �3 − 4��P1�s��

− dKrP2��s� − fKr3P4��s� − eKr�sP1��s� − �3 − 4��P1�s��

− r3hK�sP3��s� − �3 − 4��P3�s���	1 − s2

�rr
�f� = 2dfP2�s� − 2ef��1 − ��sP1�s� + ��1 − s2�P1��s�� + 12fr2P4�s�

+ 2hfr
2�3�sP3�s� − ��1 − s2�P3��s��

�r�
�f� = �− dfP2��s� + ef�1 − 2���sP1��s� + P1�s�� − 3f fr

2P4��s�

− hfr
2��1 + 2��sP3��s� − 3�1 − 2��P3�s���	1 − s2

2� fur
�f� = 2dfrP2�s� − 2efrs�1 − 2��P1�s� + 4f fr

3P4�s�

+ 4hfs�r3P3�s� + 2� f� fr�T

2� fu�
�f� = �dfrP2��s� − f fr

3P4��s� − efr�sP1��s� − �3 − 4��P1�s��
− r3hf�sP3��s� − �3 − 4��P3�s���	1 − s2 �19�

The 6�N+2� unknown coefficients could be obtained from the
imposition of interface and boundary conditions as it is presented
in Appendix B.

5 Numerical Results and Discussion
This section presents several studies to assess the effect of

thermo-elastic properties of the phases and interface conditions on
the stresses associated with the FG coated cylindrical/spherical
inhomogeneity system. The Poisson’s ratio is assumed to be equal
to 0.3 for all phases, � f =10 GPa, �m=1 GPa, � f =2�10−5 / °C,
and �m=10−5 / °C; the coating properties obey the exponential
form �9�, unless stated otherwise. The ratio of coating radius to the
core radius is a /b=1.50. A uniform far-field tension of 10 MPa in
the x1-direction, and a uniform temperature change �T=100 °C is
applied to the system. To obtain an accurate numerical solution
within a specified tolerance �, the thickness of the subdivisions
within the FG coating is refined until one-half the percent differ-
ence between the solutions obtained using n and n−2 subdivisions
become smaller than �. In the pertinent examples �=10−6 is em-
ployed, and so depending on the relative thickness of the transi-
tion zone to the radius of the core particle the number of layers
has been varied until the desired accuracy has been obtained; for
the worst scenarios encountered, 40 to 50 subdivisions suffice for
convergence.

5.1 Examples Involving Circular Cylindrical Inhomogene-
ity with FG Coating. A coated cylindrical inhomogeneity system
under thermo-mechanical loading is considered in this section.
The effect of interface conditions, SS and PP on the variation of
hoop stress in and around a cylindrical inhomogeneity with FG
transition zone is displayed in Fig. 3. It is observed that for perfect
fiber-coating and coating-matrix interfaces denoted by pp, the
variation of the hoop stress ��� is slow inside the fiber and rather
notable within the FG coating. For SS interface condition, on the
other hand, the variation of ��� within both the core and its sur-
rounding coating is very abrupt. The magnitude of the hoop stress
��� at the field points r /b=0,1− ,1+ ,1 .5− pertinent to the SS con-
ditions is much higher than that for the PP conditions. It should be
noted that for the case PP, ��� is continuous across the interfaces,
whereas it has remarkable jumps for SS interface conditions. Fig-
ures 4 and 5 are the respective distributions of the tangential and

radial stresses for various combinations of interface types. From
Fig. 4, it can be seen that the variation of the shear stress �r�
associated with the cases involving at least one sliding interface,
SS, SP, or PS is rather abrupt within the core and the coating,
whereas for perfect interfaces, PP the variation of �r� is fairly
moderate throughout the entire domain. Note that �r� takes on the
value of zero at the sliding interface. The maximum absolute
value of �r� corresponding to SS, PS, and SP occurs at the origin,
r /b=0 and is highest for SS conditions. Figure 5 examines the
effect of interface condition on the variation of �rr along the
x1-axis. Along this axis, for each of the cases PP, PS, SP, and SS,
�rr is uniform but different inside the core. The value of �rr inside
the core is the smallest for PP and largest for SS interface condi-
tions. For PS and SP cases �rr is nearly the same within the fiber.
Inside the coating the variation of �rr is more remarkable for PS;
this trend changes inside the matrix. The highest variation of �rr is
attributed to SS interface condition within the coating and matrix
regions. From Figure 6, it is observed that for such a system, the
thermal loading gives rise to negative radial stress, whereas the
applied mechanical loading produces positive �rr. Figure 7 dis-
plays the radial stress distribution for various fiber stiffness and
interface conditions. It is evident that for a given interface condi-
tion SS or PP, the magnitude of the radial stress inside the fiber is

Fig. 3 Variation of the hoop stress with distance from the cen-
ter of the FG coated cylindrical fiber along the x1-axis; effect of
interface conditions

Fig. 4 Variation of the tangential stress with distance from the
center of the FG coated cylindrical fiber along the line �=� /4;
effect of interface conditions
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lowered with increasing the shear modulus of the fiber. The varia-
tion of �rr within the coating, however, becomes more pro-
nounced as the stiffness of the fiber increases. For a system with
SS type interface conditions, the effect of spatial variation of the
thermoelastic properties of the transition layer is evident from Fig.
8. In this figure, the power in the power law relation is set equal to
5.

5.2 Examples Involving FG Coated Spherical
Inhomogeneity. An interesting field quantity is the amount of
slippage along the perimeters of the sliding interfaces. The jumps
in the hoop stress across the sliding interfaces of an FG coated
spherical inhomogeneity denoted by �u�� are depicted in Fig. 9. It
is evident that the jump along the core inhomogeneity—coating
interface pertinent to the case SS, r=b is comparable to that of SP,
r=b. Similar observation is made for the case SS, r=a and the
case where the FG coating-matrix is the sliding interface, PS, r
=a. It is noted that at �=0,90,180° the amount of slippage for all
the cases shown in Fig. 9 is equal to zero; and the absolute values
of the maximum jumps pertinent to the cases SS, r=a and PS, r
=a are higher than those corresponding to SS, r=b and SP, r=b.
The other studies in this section are similar to the studies on FG
coated cylindrical fiber discussed in Sec. 5.1, hence the redundant

discussions are avoided by noting that Figs. 10–14 of this section
are counterparts of Figs. 4–8 of Sec. 5.1, respectively.

5.3 Stress Field of an FG Pressure Vessel. The elastic fields
of a cylindrical/spherical functionally graded pressure vessel
given by Tuntuncu and Ozturk �22� will be reexamined in this
section. For this special case, the boundary conditions �15� and
�16� shall be replaced by

�rr
�1��a� = 0, �rr

�N��b� = − p

�r�
�1��a� = �r�

�N��b� = 0 �20�

where p is the internal pressure. Figures 15 and 16 depict the
respective stress fields of FG cylindrical and spherical vessels
with b/a=0.6, �=0.3 and elastic modulus of

E = E0r�, �21�

in which E0 is the Young’s modulus at the outer surface. The
stress field of an isotropic pressure vessel, denoted by superscript
H, has been used to normalize the stresses shown in these plots.

Unlike the radial stresses, the hoop stresses obtained by the
present method are substantially different from the ones given by
Tuntuncu and Ozturk. A close scrutiny of their closed-form hoop

Fig. 6 Variation of the radial stress with distance from the cen-
ter of the FG coated cylindrical fiber along the x1-axis; effect of
loading conditions

Fig. 7 Variation of the radial stress with distance from the cen-
ter of the FG coated cylindrical fiber along the x1-axis; influ-
ence of fiber stiffness and interface conditions

Fig. 8 Variation of �rr and �r� with distance from the center of
the FG coated cylindrical fiber along the line �=� /4; influence
of spatial distributions of thermal expansion coefficient and
shear modulus of FGM coating

Fig. 5 Variation of the radial stress with distance from the cen-
ter of the FG coated cylindrical fiber along the x1-axis; effect of
interface conditions
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Fig. 9 The jump in hoop displacement along the sliding inter-
faces of the FG coated spherical particle; effect of interface
conditions

Fig. 10 Variation of �r� with distance from the center of the FG
coated spherical particle along the line �=� /4; effect of inter-
face conditions

Fig. 11 Variation of the radial stress with distance from the
center of the FG coated spherical particle along the x3-axis;
effect of interface conditions

Fig. 12 Variation of the radial stress with distance from the
center of the FG coated spherical particle along the x3-axis;
effect of loading conditions

Fig. 13 Variation of the radial stress with distance from the
center of the FG coated spherical particle along the x3-axis;
influence of particle stiffness and interface conditions

Fig. 14 Variation of �rr and �r� with distance from the center
of the FG coated spherical particle along the line �=� /4; influ-
ence of spatial distributions of thermal expansion coefficient
and shear modulus of FGM coating
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stress distributions in both cylindrical and spherical cases reveals
that they are not correct; for example, contrary to their claim, the
hoop stress distribution of an isotropic cylindrical vessel cannot
be obtained by setting �=0. The correct closed-form hoop stress
expressions have been given in the Appendix C. Finally, it should
be noted that, while the formulation of Tuntuncu and Ozturk is
valid only for an elastic modulus distribution �21� and 
� 
 
2, the
present method does not pose any restriction on the elastic modu-
lus and/or Poisson’s ratio distribution�s� associated with the FG
layer.

6 Conclusion
The potential functions associated to coated cylindrical and

spherical inhomogeneities under thermo-mechanical loadings are
presented. This enables one to obtain the exact solutions pertinent
to various combinations of matrix-coating and coating-fiber inter-
face conditions, PP, PS, SP, and SS rigorously. There is no limi-
tation on the number of phases, and the exact solution can be
obtained when such conditions are imposed at any internal bound-
aries, for example at some internal boundaries within the coating,
as in the case of multiple coatings. The excellent features and
robustness of the potential function approach proved advanta-
geous in arriving at a general accurate analytical solution of an FG
coated cylindrical/spherical inhomogeneity with sliding/perfect
interfaces. In this, the only condition on the composition of the
FG coating is that to be piecewise continuous. Whereas the rel-
evant existing contributions are limited to only perfect interfaces;
moreover, either very special distributions for the material prop-

erties of the FG layer or very special kinds of loadings needs to be
considered in most of the previous studies on the subject; see, for
example, �5–12�. It is hoped that the results presented in this
manuscript can serve as a benchmark not only for the relevant
future work, but also revisiting the existing contributions because
they can be treated much more simply and efficiently with the
current approach. Since the discontinuities of some components of
the elastic field across the FG coatings with sliding interfaces pose
a challenge in performing pertinent experimentations and numeri-
cal studies, such as finite element, the present work can be par-
ticularly beneficial for validation purposes.
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Appendix A
In this Appendix, a systematic approach is developed to obtain

the 6�N+2� unknown constants, where N can be an arbitrarily
large number, involved in the analysis of an FG coated cylindrical
inhomogeneity system as presented in Sec. 3. The remote bound-
ary condition yields dm=T /4, em=−T /4, and the conditions �11�
are cast into the following form

AK�RK�XK + DK
T�RK� = AK+1�RK�XK+1 + DK+1

T �RK� �A1�

where DK
T�r� is the thermal displacement field within the Kth layer

due to the mismatch between the CTE’s of the constituent phases

Fig. 15 „a… Variation of normalized radial stress for an FG cy-
lindrical pressure vessel. „b… Variation of normalized hoop
stress for an FG cylindrical pressure vessel.

Fig. 16 „a… Variation of normalized radial stress for an FG
spherical pressure vessel. „b… Variation of normalized hoop
stress for an FG spherical pressure vessel.
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AK�r� =�
−

1

2�̄Kr
0

� − 1

�̄K

r 0 0 0

0
1

�̄Kr3 0 −
r

�̄K

1 + �

2�̄Kr

� − 3

2�̄K

r3

0
1

�̄Kr3 0
r

�̄K

1 − �

2�̄Kr

� + 3

2�̄K

r3

1

r2 0 2 0 0 0

0 −
6

r4 0 − 2 −
4

r2 0

0 −
6

r4 0 2 −
2

r2 6r2

� ,

XK =�
aK

cK

dK

eK

fK

gK

� , DK
T�r� =�

�̄Kr�T

0

0

0

0

0

� �A2�

Eq. �A1� can be written as

XK+1 = BK�RK�XK + CK�RK� �A3�

where

Bk�RK� = AK+1
−1 �RK�AK�RK� ,

CK�RK� = AK+1
−1 �RK��DK

T�RK� − DK+1
T �RK�� . �A4�

Now from Eq. �A3�

XK+1 = M1
KX1 + PK, �A5�

where

Ml
K = 


i=l

K

Bi�Ri� , �A6�

PK = M2
KC1�R1� + M3

KC2�R2� + ¯ + MK
KCK−1�RK−1� + CK�RK� .

�A7�

Letting K=N−1 in Eq. �A5�,

XN = M1
N−1X1 + PN−1. �A8�

Hence, Eq. �A8� along with �14�–�16� can be used to calculate the
unknown constants for each phase.

Appendix B
The same approach developed in the previous appendix is fol-

lowed to determine the unknown constants involved in the formu-
lation of an FG coated spherical inhomogeneity system studied in
Sec. 4. The far-filed boundary conditions yield dm=−2�em
=T� / �1+��. Also the continuity conditions �11� can be rewritten
in the form given by Eq. �A1� with AK�r� and XK redefined as

AK�r� =�
−

1

2�Kr2

3

4�Kr4 0 −
r

2�K

0 −
�r3

�K

0
− 9

4�Kr4

4� − 5

2�Kr2

3r

2�K

�2� − 1�r
�K

3�r3

�K

0
− 3

r4

�1 − 2��
�Kr2

− 3r

2�K

�1 − 2��r
�K

�4� − 7�r3

2�K

2

r3

− 6

r5

− 2�

r3 − 1 − 2� �r2

0
18

r5

2�5 − ��
r3 3 − 2�1 − 2�� − 3�r2

0
12

r5

2�1 + ��
r3 − 3 2�1 − 2�� − �7 + 2��r2

�
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and

XK =�
aK

bK

cK

dK

eK

fK

� , hK = −
4

7
�fK �B1�

and Dk remains unchanged. A similar procedure described in Ap-
pendix A along with stress and displacement fields �19� can be
used to compute all the unknown constants.

Appendix C
As mentioned in Sec. 5.3, the expressions derived by Tuntuncu

and Ozturk �22� for the hoop stress distributions in FG cylindrical
and spherical pressure vessels are incorrect. Following their nota-
tions, the correct closed-form expressions must read, respectively,
as

��� =

P�b

a
�1−�

��1 − �2�

��b

a
�m1

− �b

a
�m2��m1�� − 1� − ���m2�� − 1� − ��

r�−1

�C1�

�1 = rm1�m2�� − 1� − ���1 + �m1 − 1���

�2 = rm2�m1�� − 1� − ���1 + �m2 − 1��� �C2�
and

��� =

P�b

a
�1−�

��1 − �2�

��b

a
�s1

− �b

a
�s2��s1�� − 1� − 2���s2�� − 1� − 2��

�C3�

�1 = rs1−1�s2�v − 1� − 2v��1 + s1v�r�

�2 = rs2−1�s1�v − 1� − 2v��1 + s2v�r� �C4�

Now, in lieu of the above corrections, by setting �=0 the expres-
sions for the hoop stress corresponding to homogeneous cylindri-

cal and spherical pressure vessels �Eqs. �20� and �22� given in the
paper of Tuntuncu and Ozturk �22�� are readily available.
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Thermal Buckling of Multi-Walled
Carbon Nanotubes by Nonlocal
Elasticity
The small internal length scales of nanomaterials/nano-devices may call the direct ap-
plication of classical continuum models into question. In this research, a nonlocal elastic
shell model, which takes the small scale effects into account, is developed to study the
thermal buckling behavior of multi-walled carbon nanotubes. The multi-walled carbon
nanotubes are considered as concentric thin shells coupled with the van der Waals forces
between adjacent nanotubes. Closed form solutions are formulated for two types of ther-
mal buckling of a double-walled carbon nanotube: Radial thermal buckling (as in a shell
under external pressure) and axial thermal buckling. The effects of small scale effects are
demonstrated, and a significant influence of internal characteristic parameters such as
the length of the C-C bond has been found on the thermal buckling critical temperature.
The study interestingly shows that the axial buckling is not likely to happen, while the
“radial” buckling may often take place when the carbon nano-tubes are subjected to
thermal loading. Furthermore, a convenient method to determine the material constant,
“e0” and the internal characteristic parameter, “a,” is suggested.
�DOI: 10.1115/1.2200656�

1 Introduction
The discovery of carbon nanotubes by Ijima �1� has inspired the

promise of a new generation of novel composites and devices
such as nano-electronics, nano-devices, and nano-composites
�2,3�. Attention has been attracted to the subject of understanding
the material properties of carbon nanotubes and their applications
�4–7�. In most of the studies, experimental and molecular-
dynamics simulation approaches are often employed and many
relevant results have been obtained. However, the experiments at
the nano-scale are often hard to control, and the simulations by
molecular-dynamics are difficult to accurately formulate and ex-
tremely expensive for large-scale atomic systems �8�. Therefore,
many researchers have attempted to expand the classical con-
tinuum mechanics approach to the atomic or molecular-based dis-
crete systems �8–11�. For example, adding the van der Waal’s
forces to the classical shell models in order to simulate the carbon
nanotubes, etc. The classical continuum models are efficient and
accurate in computations for a material system in large length
scales. But the length scales at nano-meters such as in nano-
materials or nano-devices may not be sufficiently big enough to
homogenize the discrete structure into a continuum �12�. The as-
sumption upon which the classical continnum mechanics is built
may no longer be fully satisfied. Therefore, modifications which
would take the small scale effect into account are needed in order
to make use of the virtues of the well-developed classical con-
tinuum mechanics.

In 1972, Eringen proposed a theory, called nonlocal continuum
mechanics �13�, in an effort to deal with the small-scale structure
problems. In the classical �local� continuum elasticity, the material
particles are assumed to be continuously distributed and the stress
tensor at a reference point is uniquely determined by the strain
tensor at the same point. On the contrary, the nonlocal continuum

mechanics is based on the constitutive functionals being function-
als of the past deformation histories of all material points of the
body concerned. The small length scale effects are counted by
incorporating the internal characteristic length such as the length
of the C-C bond into the constitutive relationship. Solutions from
various problems support this theory �13–15�. For examples, the
dispersion curves by the nonlocal model are in excellent agree-
ment with those by the Born-Karman theory of lattice dynamics;
the dislocation core and cohesive stress predicted by the nonlocal
theory are close to those known in the physics of solids �14,15�.
Recently, some researchers such as Peddieson et al. �16� and
Sudak �17� applied Eringen’s theory to the nano-scales structures.
In particular, Peddieson et al. �16� illustrated by the Benoulli/
Euler beam model that the small scale effects manifest themselves
in the range of nano-meters. Sudak in �17� applied the nonlocal
elasticity to the column buckling study of the axial buckling of
carbon nano-tubes. The results in these papers indicate that the
small length scales would have significant influences and the non-
local continuum model can effectively capture these influences in
the study of nano-structures.

The importance and significant results of thermal buckling for
conventional structures such as plates and shells have been re-
ported by many researchers �18�. But in our literature search, the
study of thermal buckling of nano-tubes has received relatively
little attention. In the current paper, a nonlocal multiple shell
model is developed to investigate the thermal buckling problems
of multi-walled carbon nanotubes. In this model, not only the
terms concerning the van der Waals forces between adjacent nano-
tubes are incorporated into the Donnell shell model �19�, but the
full nonlocal constitutive relationship is also adopted in the deri-
vation of the formulas. Therefore, this model includes both the
interactions from the van der Waals forces and the effects from the
internal small scales of the nano-devices. Compared with some
nonlocal models in the literature for nano-tubes subjected to me-
chanical loading, our model is a comprehensive nonlocal elastic
model in the sense that no approximation has been made in the
use of the nonlocal elastic constitutive equations and each tube is
treated as a shell, not a one-dimensional column. Since the ther-
mal expansion coefficients of the carbon nano-tube are negative
�7�, the tube usually contracts when its temperature is elevated.
Therefore, its thermal buckling modes are different from those of
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conventional shell structures. For example, a simply supported
conventional shell structure often shows axial buckling modes un-
der increased temperature without radial constraints �18�. How-
ever, a fixed simply supported nano-tube is in tension in the axial
direction, but may fall into a “radial” buckling mode because of
the contraction, like a traditional shell under external radial com-
pressive pressure. In this study two cases of temperature varia-
tions are investigated under fixed simply edge-supported bound-
ary conditions: Radially elevated temperature and uniformly
reduced temperature. Closed form expressions for the critical tem-
peratures are obtained and numerical results for double-walled
nanotubes are presented. The results show that the internal small
scales have significant effects on the critical buckling temperature.
A method to determine the internal characteristic parameter, “a”
and material constant, “e0” �defined in see Sec. 2� is also pro-
posed.

This paper is organized as follows: Section 2 is a brief summary
of the nonlocal continuum mechanics; Sec. 3 is the derivation of a
nonlocal continuum elastic shell model for the multi-walled nano-
tubes; in Sec. 4, the thermal buckling for two types of temperature
distributions are analyzed under simply end-supported boundary
conditions, and closed form solutions are formulated for the
double-walled nano-tubes; numerical results for double-walled
nano-tubes and discussions are presented in Sec. 5; and some
conclusions are suggested in Sec. 6.

2 Summary of the Nonlocal Elasticity
In the classical �local� theory of elasticity, the stress tensor at a

reference point x of a body can be determined by the strain tensor
at that point. However, Eringen �13,14� pointed out that when we
deal with a small scale structure, the media may no longer be
considered continuously distributed and the internal characteristic
length such as the length of the C-C bond in carbon nano-tubes
should be considered. Based on this motivation, he developed a
theory of nonlocal elasticity. The nonlocal mechanics says that the
stress tensor at a reference point x in a body depends not only on
the strain tensor at that point x, but also on the strain tensor at all
other points, x� of this body. The constitutive equations of nonlo-
cal elasticity read as

�ij�x� =�
v

���x� − x�,��cijkl�kl�x��dv�x�� �1�

where, ���x�−x � ,�� is the nonlocal moduli; �=e0a / l with a an
internal characteristic length �e.g., lattice parameter, granular dis-
tance, length of C-C bonds�, l an external characteristic length
�e.g., crack length, wave-length�, and e0 a constant appropriate to
each material and being determined by experiment or by matching
dispersion curves of plane waves with those of atomic lattice dy-
namics; cijkl the elastic moduli tensor; �kl�x�� the strain tensor.

Sometimes, it is hard to find an explicit expression for the ker-
nel, ���x�−x � ,�� and do the integration of �1�. In 1983, Eringen
�15� developed some differential forms for practical use. For the
two-dimensional nonlocal elasticity, a differential form corre-
sponding to Eq. �1� is expressed as:

�1 − �2l2�2��ij = cijkl�kl �2�

One may see that when the internal characteristic length a is
neglected, i.e., the particles of a medium are considered to be
continuously distributed, then �, which is defined as ae0 / l is zero,
and Eq. �2� reduces to the constitutive equation of classical elas-
ticity. Also, it should be noted that, through Eq. �2�, the � is
cancelled from the rest of the analysis, leaving a and e0 as the
internal characteristic constants.

3 A Nonlocal Continuum Model for Multi-Walled Car-
bon Nanotubes

Let x ,s ,z be the axial, circumferential and radial coordinates of
the nanotube �Fig. 1�, respectively. If the Donnell’s assumptions
�19� are used, then the strains and displacements of a nanotube
have the following relations:

�x = �0x − zw,xx, �s = �0s − zw,ss, �xs = �0xs − zw,xs �3�

where �0x ,�0s, and �0xs are the mid-surface strains. These are:

�0x = u,x + 1
2w,x

2

�0s = v,s +
1

2
w,s

2 +
w

R
�4�

�0xs = u,s + v,x + w,xw,s

in which, u and v are, respectively, the axial and circumferential
displacements of mid-surface, and w is the radial displacement; R
is the radius of the mid-surface; the comma denotes differentiation
with the corresponding coordinates. From Eq. �2�, the nonlocal
constitutive equations can be written as:

�1 − �2l2�2��x =
E

1 − �2 ��x + ��s� −
E��T

1 − �

�1 − �2l2�2��s =
E

1 − �2 ���x + �s� −
E��T

1 − �
�5�

�1 − �2l2�2��xs =
E

2�1 + ��
�xs

in which �2=�2 /�x2+�2 /�s2; E ,� ,� ,�T are the elastic modulus,
Poisson’s ratio, thermal expansion coefficient, and increase in
temperature, respectively.

From Eqs. �3� and �5�, one can have the following resultant
forces and moments:

�1 − �2l2�2�Nx = K��0x + ��0s� −
NT

1 − �

Fig. 1 A shell model of multi-walled nanotubes in an elastic
medium
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�1 − �2l2�2�Ns = K���0x + �0s� −
NT

1 − �
�6�

�1 − �2l2�2�Nxs =
1 − �

2
K�0xs

and

�1 − �2l2�2�Mx = − D�w,xx + �w,ss� −
MT

1 − �

�1 − �2l2�2�Ms = − D�w,ss + �w,xx� −
MT

1 − �
�7�

�1 − �2l2�2�Mxs = − �1 − ��Dw,xs

where, K=Eh / �1−�2� and D=Eh3 /12�1−�2�, with h being the
thickness of the nano-tube; NT=�E��Tdz, and MT=�E��Tzdz
are the thermal resultant force and moment, respectively.

The nonlinear equilibrium equations, �ij,j + f i�0, with f1= f2�0
and f3= p�x ,s�, can be expressed in terms of resultant forces and
moments as:

�1 − �2l2�2�Nx,x + �1 − �2l2�2�Nsx,s = 0

�1 − �2l2�2�Nsx,x + �1 − �2l2�2�Ns,s = 0 �8�

�1 − �2l2�2�Mx,xx + 2�1 − �2l2�2�Mxs,xs + �1 − �2l2�2�Ms,ss

− �1 − �2l2�2�NL − �1 − �2l2�2�
1

R
Ns + �1 − �2l2�2�p�x,s� = 0

where the NL is a nonlinear operator defined as

NL = Nxw,xx + 2Nxsw,xs + Nsw,ss �9�

and p�x ,s� is the force acting in the radial direction. For nano-
tubes, it is the van der Waals interaction from an adjacent tube.
This interaction is considered to be proportional to the radial dis-
placement difference between two neighboring nano-tubes
�8,11,17�.

To study the buckling behavior of the nanotubes, the perturba-
tion technique �20,21� is employed here. Let u0 ,v0 ,w0 be the
pre-buckling state of displacements, which satisfy equilibrium
equations, u1 ,v1 ,w1 a neighboring state, and the 	 is very small
constant, then one has:

u = u0 + 	u1, v = v0 + 	v1, w = w0 + 	w1 �10�
The corresponding resultant forces and moments can be written

as:

Nx = N0x + 	N1x, Ns = N0s + 	N1s, Nxs = N0xs + 	N1xs

�11�
Mx = M0x + 	M1x, Ms = M0s + 	M1s, Mxs = M0xs + 	M1xs

Considering the w0 to be zero in the pre-buckling state �22,23�
and substituting Eqs. �10� into Eq. �11�, then into Eq. �8�, leads to
the following stability equation for nonlocal continuum elasticity
of a nano-tube:

�8w + 4k4w,xxxx +
1

D
�1 − �2l2�2��4NL

0 =
1

D
��1 − �2l2�2��4p�x,s��

�12�

where k4=3�1−�2� / �R2h2�, and the NL
0 operator reads as:

NL
0 = N0xw,xx + 2N0xsw,xs + N0sw,ss �13�

N0x ,N0xs ,N0s are the resultant forces at the pre-buckling state that
satisfy the equilibrium equation �8�. For convenience of writing,
the superscript “1” is omitted in Eqs. �12� and �13�.

Our structure is a multi-walled nano-tube and we shall denote
by wj, j=1,2 , . . . ,N the transverse displacements of each of the N
walls. Also, we denote by pj,�j+1� the interaction pressure exerted

on the tube j from the tube j+1. Applying Eq. �12� to each of the
nano-tubes of the multi-walled carbon nanotube structure, one can
obtain a set of nonlocal equations for the multi-walled carbon
nanotube �i.e., w1 is the displacement of the first nano-tube; w2 is
the displacement of the second nano-tube, etc.�:

�8w1 + 4k1
4w1,xxxx +

1

D
�1 − �2l2�2��4NL1

0

=
1

D
�1 − �2l2�2��4p12�x,s�

�8w2 + 4k2
4w2,xxxx +

1

D
�1 − �2l2�2��4NL2

0

=
1

D
�1 − �2l2�2��4�p23�x,s� −

R1

R2
p12�x,s�	

�14�

�8wN + 4kN
4 wN,xxxx +

1

D
�1 − �2l2�2��4NLN

0

=
1

D
�1 − �2l2�2��4�pN�x,s� −

RN−1

RN
p�N−1�N�x,s�	

where,

p12�x,s� = c�w2�x,s� − w1�x,s��

pN�N−1��x,s� = c�wN�x,s� − wN−1�x,s�� �15�

pN�x,s� = − k0�wN�x,s� − wN−1�x,s��

in which, pj�j+1��x ,s� is the interaction pressure exerted on the
tube j from the tube j+1, while p�j+1�j�x ,s� is the interaction pres-
sure exerted on the tube j+1 from the tube j; these have the
following relationship:

Rjpj�j+1��x,s� = − Rj+1p�j+1�j�x,s�, j = 1,2, . . . ,N − 1 �16�

pN is the interaction pressure between the outmost tube and the
surrounding elastic medium; k0 is the spring constant of the sur-
rounding elastic medium; c is the van der Waals interaction coef-
ficient and can be estimated from the data given in �12,24�, and it
reads as:

c =
200

0.16
d2 erg/cm2, d = 0.142 nm �17�

where d is the bond distance between carbon atoms in a graphite
sheet. One may realize that the buckling phenomenon can be de-
scribed as an infinitesimal deflection perturbation, so the van der
Waals interaction and interaction between the outer tube and the
elastic surrounding media can be estimated from a linear function
of the deflection jump at two points, and the interactions in the
tangential direction can be neglected, as discussed in Ref. �17�.
But for post-buckling behavior, the nonlinear higher order terms
and effects from the tangential force should be included in these
interaction expressions.

Substitution of �15� into Eq. �14� yields the nonlocal model for
the multi-walled nano-tubes:

�8w1 + 4k1
4w1,xxxx +

1

D
�1 − �2l2�2��4NL

0

=
c

D
�1 − �2l2�2��4�w2 − w1�

�8w2 + 4k2
4w2,xxxx +

1

D
�1 − �2l2�2��4NL

0

=
c

D
�1 − �2l2�2��4�w3 − w2 −

R1

R2
�w2 − w1�	
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�8wN−1 + 4kN−1
4 wN−1,xxxx +

1

D
�1 − �2l2�2��4NL

0

=
c

D
�1 − �2l2�2��4�wN − wN−1 −

RN−2

RN−1
�wN−1 − wN−2�	

�18�

�8wN + 4kN
4 wN,xxxx +

1

D
�1 − �2l2�2��4NL

0

=
c

D
�1 − �2l2�2��4�−

k0

c
wN −

RN−1

RN
�wN − wN−1�	

Here in the set of Eqs. �18�, one can clearly see that if the
internal characteristic parameter, a is negligible, then 1−�2l2�2

=1, and this model returns to the classical continuum elastic shell
model including the van de Waals interaction via the coefficient c,
and the interaction from the surrounding elastic medium via the
coefficient k0.

4 Thermal Buckling of the Multi-Walled Carbon
Nanotubes

In the set of Eqs. �18�, the thermal stress is related through the
pre-buckling terms such as N0x and N0s in NL

0. The edges of the
nano-tubes are assumed to be simply supported and the buckling
of the carbon nanotubes under two types of temperature distribu-
tions will be analyzed in the following study: �a� Radially elevated
temperature and �b� uniformly reduced temperature. Without loss
of generality, let us first consider the double-walled carbon nano-
tubes �DWCNT�, i.e., N=2.

4.1 Radially Elevated Temperature. The thermal expansion
coefficient of carbon nanotubes depends on the temperature range,
radius, the number of layers and helix �6�. But in most cases, they
are likely negative �7�. Hence, the nano-tubes contract when the
temperature rises, while the surrounding media expands. There-
fore, the tube can be viewed as a shell under external compressive
pressure.

If the temperature rise varies linearly across the nano-tube
thickness as

�T�z� = �T0
z + h/2

h
, −

h

2
� z �

h

2
�19�

then from pre-buckling equilibrium, one can have N0x=N0xs=0 in
the operator NL

0, and

N0s = −
E�h

1 − �
�

−h/2

h/2

�T�z�dz = −
E�h

2�1 − ��
�T0 �20�

The stability equations from �18� can then be written as:

�R1
8 w1 + 4k1

4w1,xxxx = −
N0s

D
�1 − �2l2�R1

2 ��R1
4 w1,ss

+
1

D
�1 − �2l2�R1

2 ��R1
4 �c�w2 − w1��

�21�

�R2
8 w2 + 4k2

4w2,xxxx = −
N0s

D
�1 − �2l2�R2

2 ��R2
4 w2,ss

−
1

D
�1 − �2l2�R2

2 ��R2
4 �k0w2 + c

R1

R2
�w2 − w1�	

where,

�Rj

2 =
�2

�x2 +
1

Rj
2

�2

��2 , j = 1,2 �22�

One can see that a solution for each of the concentric nanotubes
can take the form:

w1 = A1 sin
m


L
x�sin�n
��, w2 = A2 sin
m


L
x�sin�n
��

�23�
which satisfies the edge conditions

w1 = w1,xx = 0, w2 = w2,xx = 0 �24�

where m is the axial half wave-number, and n the circumferential
half wave-number.

If one defines:


R1 =
m2
2

L2 +
n2
2

R1
2 , 
R2 =

m2
2

L2 +
n2
2

R2
2

�1 =
D

�1 + �2l2
R1�
R1
2 

R1

4 +
m4
4

L4 4k1
4� �25�

�2 =
D

�1 + �2l2
R2�
R2
2 

R2

4 +
m4
4

L4 4k2
4�

Then, substitution of �23� into Eq. �21� yields:

��1 + c − 
n


R1
�2

N0s	A1 − cA2 = 0

�26�

− c
R1

R2
A1 + ��2 + c

R1

R2
+ k0 − 
n


R2
�2

N0s	A2 = 0

For non-trivial solutions of A1 and A2, the determinant of Eq.
�26� must vanish, i.e.,

��1 + c − 
n


R1
�2

N0s	��2 + c
R1

R2
+ k0 − 
n


R2
�2

N0s	 −
R1

R2
c2 = 0

�27�
which leads to:

�T0
NL =

1 − �

E�h

 1

n

�2�
�1R1

2 + �2R2
2 + k0R2

2 + cR1
2 +

R1

R2
cR2

2�
−�
�2R2

2 − �1R1
2 + k0R2

2 − cR1
2 +

R1

R2
cR2

2�2

+ 4cR1
2R1

R2
cR2

2	
�28�

If the effects of small scale are neglected, the constants �1 and
�2 in �25� are redefined as:

�1
o = D

R1

2 +
m4
4

L4
R1
2 4k1

4�
�2

o = D

R2
2 +

m4
4

L4
R2
2 4k2

4� �29�

and the buckling temperature variation reads:

�T0
L =

1 − �

E�h

 1

n

�2�
�1

oR1
2 + �2

oR2
2 + k0R2

2 + cR1
2 +

R1

R2
cR2

2�
−�
�2

oR2
2 − �1

oR1
2 + k0R2

2 − cR1
2 +

R1

R2
cR2

2�2

+ 4cR1
2R1

R2
cR2

2	
�30�

To investigate the effects of small length scale on the thermal
buckling temperature variation, the ratio
��a ,e0 ,c ,k0 ,R1 ,R2 ,L ,E ,�� can be defined as:

��a,e0,c,k0,R1,R2,L,E,�� =
�T0

NL

�T0
L �31�

The superscripts NL and L denote the results obtained by the
nonlocal elastic model and the classical model, respectively.
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4.2 Uniformly Reduced Temperature. Now let us consider
the case that the temperature of the nano-tubes uniformly de-
creases by:

T�x� = �T0, 0 � x � L �32�
Due to this temperature change, a compressive axial force is de-
veloped at the fixed ends of the nano-tubes. In the radial direction,
the surrounding elastic medium contracts away from the nano-
tubes while the tubes expand. Therefore, the pre-buckling forces
are: N0s=N0xs=0 in the operator NL

0, and

N0x =
E�h

1 − �
�T0 �33�

Now, the stability equations become:

�R1
8 w1 + 4k1

4w1,xxxx = −
N0x

D
�1 − �2l2�R1

2 ��R1
4 w1,xx

+
1

D
�1 − �2l2�R1

2 ��R1
4 �c�w2 − w1��

�34�

�R2
8 w2 + 4k2

4w2,xxxx = −
N0x

D
�1 − �2l2�R2

2 ��R2
4 w2,xx

−
1

D
�1 − �2l2�R2

2 ��R2
4 �k0w2 + c

R1

R2
�w2 − w1�	

The expression �23� can also be a solution to this case. The
argument similar to the one used in obtaining �26� yields:


�1 + c −
m2
2

L2 N0x�A1 − cA2 = 0

�35�

− c
R1

R2
A1 + 
�2 + c

R1

R2
+ k0 −

m2
2

L2 N0x�A2 = 0

which leads to:

�T0 =
1 − �

2E�h

 L

m

�2
�1 + �2 + k0 + 
1 +

R1

R2
�c

−���2 − �1 + k0 − 
1 −
R1

R2
�c	2

+ 4
R1

R2
c2� �36�

A ratio similar to �31� can also be defined for this case, in order to
compare with the classical �as opposed to the nonlocal elastic�
model.

4.3 Number of the Carbon Nanotubes, N�2. Though the
above study is for N=2, the procedure can be extended to multi-
walled carbon nanotubes �N�2�. For example, if the multi-walled
nano-tube is subjected to the thermal loading defined in Eq. �19�,
the critical temperature variation �T0, through Eq. �20�, is found
by setting equal to zero the determinant of the following matrix:

�
a1,1 + 
n


R1
�2

Nos − c 0 . . . 0

− c
R1

R2
a2,2 − 
n


R2
�2

Nos − c 0 . . .

0 . . . . . . . . .

. . . 0 −
RN−2

RN−1
c aN−1,N−1 − 
 n


RN−1
�2

Nos − c

0 . . . 0 −
RN−1

RN
c aN,N − 
n


RN
�2

Nos

� �37�

where,

a1,1 = �1 + c; a2,2 = �2 + 
1 +
R1

R2
�c

�38�

aN−1,N−1 = �N−1 + 
1 +
RN−2

RN−1
�c; aN,N = �N +

RN−1

RN
c + ko

Setting the determinant of �37� to zero results in an Nth poly-
nomial equation in terms of �T0, which can be solved numerically
for N�2. The minimum of the solutions for �T0 is the desired
critical solution.

5 Results and Discussion
Numerical results are presented here for double-walled carbon

nano-tubes in an elastic medium. The original data are chosen as:
The length of a C-C bond is a=1.42 nm �13�; the material thermal
expansion coefficient �=−1.60�10−6 / °K, E=742 GPa, �=0.17
�7�; the radius of the inner carbon tube R1=R1

o=0.35 nm and the
radius of the outer carbon tube R2=R2

o=0.79 nm �Fig. 1�, the
thickness of each nano-tube h= �R2−R1� /4, the length of the

nano-tubes L=10�R2; the van de Waals interaction coefficient
c=0.0694 TPa, the spring constant from the surrounding elastic
medium k0=0.001�c.

Presented in Fig. 2 is the influence of the internal characteristic
parameter, a :��a ,e0 , . . . ,��, defined in Eq. �31�, versus a for dif-
ferent sizes of the nano-tubes. Both the axial half wave-number, m
and circumferential half wave-number, n are 1, which corresponds
to the critical value of �T0 �see Fig. 5 for details�. Here, the
material constant, e0 is assumed as 0.39 �15�.

Three observations can be made here: First, for each of the
tubes �except the one with R1=300R1

o ,R2=300R2
o�, the

��a ,e0 , . . . ,�� decreases notably as the internal characteristic pa-
rameter, a increases. This means that the classical shell model
may give over-estimated predictions for the thermal buckling tem-
perature when a structure is in the scope of nanometers. Second,
when the inner tube diameter of the multi-walled carbon tube is
larger than 1.05�10−8 m � out of the nanometer range�, the length
of the C-C bond �an internal characteristic parameter� does not
have an influence on the thermal buckling behavior �see the dotted
curve of Fig. 2�. In other words, if the structure considered falls
above the nanometer range, the nonlocal model and classical shell
model will give very close predictions. Third, for carbon nano-
tubes, the internal parameter a �=1.42 nm� has a significant influ-
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ence on the thermal buckling point. For example, if the inner
radius of the double-walled carbon nanotubes is 0.35 nm and the
outer radius is 0.79 nm, the ratio function ��a ,e0 , . . . ,��=0.18.

Plotted in Fig. 3 are the influences from the combination of the
internal characteristic parameter and the material constant, ae0,
while the curves depicted in Fig. 4 are the influences of the inter-
nal parameter a under different material constants, e0. The de-
creasing tendency similar to the one in Fig. 2 is also shown in
Figs. 3 and 4, i.e., the value of ��a ,e0 , . . . ,�� decreases as the
value of ae0 increases �Fig. 3�, or as the internal length parameter,
a increases for each given e0 �Fig. 4�. One may further observe
that the curves in Figs. 3 and 4 together can provide a convenient
way to determine the values of the material constant, e0 and the
internal characteristic parameter, a for each material. Here is the
procedure: �1� Experimentally find the critical buckling tempera-
ture variation �T0

NL, then calculate the value of �ae0

=��a ,e0 ,c ,k0 ,R1 ,R2 ,L ,E ,�� via dividing �T0
NL by �T0

L; �2� Us-
ing the �ae0

to locate the value of ae0 from the curves in Fig. 3;
�3� Using the same �ae0

to locate the values of the pair �a ,e0�
from the curves in Fig. 4; �4� the values of the pair �a ,e0�, whose
product equals the value of ae0 in step two are the values for a
and e0 of the material, respectively. Sudak �17� discussed the de-

termination of the material constant e0 for the known a. But the
suggested procedure solves for the e0 and a simultaneously.

Results in Figs. 5 and 6 are the critical �T0s of two types of
thermal buckling modes �radial buckling due to elevated radial
temperature and axial buckling due to reduced temperature �18��
versus the axial half wave-number, m and the circumferential half
wave-number, n. The material constant e0 used in Figs. 5 and 6 is
assumed to be 0.78, which is very close to the estimated value of
0.775 from the data given in �25�. The other data are the original
ones described in the beginning of the section. Figure 5 shows that
thermal buckling happens when both the axial half wave-number,
m and circumferential half wave-number are 1, and the �T0 is
increased by 840.25°C for this double-walled nano-tubes. How-
ever, from the result in Fig. 6, one can see that the absolute value
of �T0 �“−” means temperature decreased� is very big. Physically
speaking, this type of buckling mode will never happen for the
carbon nano-tubes, which by itself is an interesting observation.

Finally, it should be mentioned that in this paper we study
buckling and therefore, as is well known in bifurcation theory, we
do not need to consider the geometric nonlinearities. Of course, if
post-buckling is studied, nonlinearities need to be included, as in
�26,27�.

Fig. 2 The influence of the internal characteristic parameter,
“a”

Fig. 3 The influence of the combined parameter “ae0”

Fig. 4 The influence of the internal parameter “a” or various
values of “e0”

Fig. 5 Critical temperature �T0
„a… versus „m ,n…
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6 Conclusions
In this paper, a nonlocal multi-walled shell model is developed

to investigate the thermal buckling phenomenon of multi-walled
carbon nano-tubes in an elastic medium. The tubes are considered
concentric shells coupled by the van der Waals’ interaction be-
tween adjacent tubes. Closed form expressions for the critical
temperature variation are formulated for double-walled carbon
nano-tubes, and numerical results are presented to demonstrate the
influences of the small length scales in the study of nano-devices.
Observations in this research suggest the following conclusions:
�1� When the structure considered falls into the nano-meter range,
the material internal characteristic parameter has a significant in-
fluence on the outcomes of this study. The nonlocal mechanics
model is an appropriate model. But when the geometrical sizes of
the structure are bigger than nano-meter scales, the classical elas-
tic model is valid; �2� the curves of ��a ,e0 , . . . ,�� versus ae0 and
��a ,e0 , . . . ,�� versus a under different e0 can be used to deter-
mine the internal parameter a, and the material constant, e0; �3�
for carbon nano-tubes, the possible thermal buckling mode is the
“radial” buckling mode �as in a shell under external pressure�.
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Free Vibrations of a Rotating
Inclined Beam
By utilizing the Hamilton principle and the consistent linearization of the fully nonlinear
beam theory, two coupled governing differential equations for a rotating inclined beam
are derived. Both the extensional deformation and the Coriolis force effect are consid-
ered. It is shown that the vibration system can be considered as the superposition of a
static subsystem and a dynamic subsystem. The method of Frobenius is used to establish
the exact series solutions of the system. Several frequency relations that provide general
qualitative relations between the natural frequencies and the physical parameters are
revealed without numerical analysis. Finally, numerical results are given to illustrate the
general qualitative relations and the influence of the physical parameters on the natural
frequencies of the dynamic system. �DOI: 10.1115/1.2200657�

1 Introduction
Rotating beams, which have importance in many engineering

applications such as turbine blades, helicopter rotor blades, air-
plane propellers, robot manipulators, and various cooling fans,
have been studied for a long time. An interesting review can be
found in the related papers by Leissa �1�, Ramamurti et al. �2� and
Rao �3�.

In the vibrational analysis, the structures were often modeled as
beams vibrating in flexural motion. The influence of tip mass,
rotating speed, shear deformation and rotatory inertia, hub radius,
setting angle, taper ratio, pretwisted angle, and elastic root re-
straints on the natural frequencies of flexural vibration of a rotat-
ing beam were investigated by many investigators �4–17�. How-
ever, most of the qualitative conclusions are not general
conclusions and are based on tremendous numerical analysis, ex-
cept the studies on the upper and lower bounds of the fundamental
frequency of a rotating beam �15–17�. The upper and lower
bounds of the fundamental frequencies of a rotating uniform beam
with a clamped root were obtained analytically by Schihansl �15�
and Pnueli �16�. They concluded that the bending frequency of a
rotating beam with clamped root, because of centrifugal stiffen-
ing, is higher than that of a nonrotating beam. Lee and Kuo �17�
showed that if the setting angle is not equal to zero, the funda-
mental frequency of a rotating uniform beam with an elastically
restrained root can be less than that of a nonrotating beam, and the
phenomenon of rotating instability may occur.

Even though the vibration of a rotating beam has been exten-
sively studied, to the authors’ knowledge, a review on the litera-
ture reveals that the effect of inclination angle, which is consid-
ered in the recent computer cooling fan design on the natural
frequencies of rotating beams, has never been studied before.

In this paper, based on the Bernoulli-Euler beam theory, one
considers the free vibration of a rotating uniform beam with an
inclination angle. The extensional deformation and the Coriolis
force effect are considered. The beam considered is doubly sym-
metric, such that the centroidal axis and the neutral axis are coin-
cident. By utilizing the Hamilton principle and the consistent lin-
earization of the fully nonlinear beam theory �18,19�, two coupled
nonhomogeneous governing differential equations for the rotating

inclined beam are derived. It is shown that the analysis of the
problem can be simplified by considering the system as the super-
position of two subsystems. One of them is a static system and the
other is a dynamic system. The natural frequencies of the inclined
beam will be determined from the dynamic subsystem governed
by two coupled homogeneous differential equations. One of the
coefficients of the differential equations is variable. In general, the
exact solutions of the system are not available. The kind of prob-
lem was mainly solved by approximated methods such as the
Galerkin method �4�, the Rayleigh–Ritz method �5�, the finite dif-
ference method �6�, the dynamic stiffness method �11�, and the
finite element method �9,12–14�. In the present study, it is shown
that the coupled characteristic differential equations can be decou-
pled and reduced to a sixth order ordinary differential equation
with variable coefficients. By using the method of Frobenius and
extending the works of Stafford and Giurgiutiu �20,21� and Lee
and Kuo �22�, the exact series solution of the system is developed.
Several frequency relations that provide general qualitative rela-
tions between the natural frequencies and the physical parameters
are revealed without a numerical analysis. Finally, numerical re-
sults are given to illustrate the general qualitative relations and the
influence of the physical parameters on the natural frequencies of
the dynamic system.

2 Governing Differential Equations
Consider the free vibration of a rotating inclined Bernoulli-

Euler beam, as shown in Fig. 1. The beam is mounted with a
setting angle � and an inclination angle � on a hub with radius rh.
It rotates with a constant angular velocity �. Three coordinate
systems, O−X0Y0Z0, A−X1Y1Z1, and A−X2Y2Z2, are used in the
expression of the configuration. The centroidal axis of the beam is
coincident with the X2 axis. It is assumed that the thickness of the
beam is relatively small to the width of the beam. The deflection
of the beam is in the X2−Y2 plane. The position vector of point P
at an arbitrary cross section in the rotating beam, after deforma-
tion, can be expressed as

OP� = �rh + �x + u�cos � − v sin � sin ��i� + ��x + u�sin �

+ v cos � sin ��j� + v cos �k� �1�

where u and v are the centroidal axial and transverse displace-
ments, respectively, x is the distance from the origin point A to the

position of point P, and i�, j�, k� are unit vectors in the O−X0Y0Z0
coordinate system. The velocity of point P is
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vp
� = �du

dt
cos � −

dv
dt

sin � sin � − ���x + u�sin �

+ v cos � sin ���i� + �du

dt
sin � +

dv
dt

cos � sin �

+ ��rh + �x + u�cos � − v sin � sin��� j� +
dv
dt

cos �k� �2�

and the kinetic energy T of the rotating beam can be expressed as

T =
1

2�
0

L

�A�vp
� · vp

��dx �3�

where �, A, and L are the mass per unit volume, the cross sec-
tional area, and the length of the beam, respectively.

The displacement for arbitrary point P1 in the cross section of
the rotating beam is

u1 = u − r
�v
�x

�4�

where r is the lateral distance of point P1 to the centroidal axis.
Based on the Bernoulli-Euler beam theory, only the normal strain
�x is considered. The nonlinear strain-displacement relation yields

�x =
�u

�x
− r

�2v
�x2 +

1

2
� �v

�x
	2

�5�

The potential energy U of the rotating beam is

U =
1

2 �� E�x
2 dA dx , �6�

where E is the Young’s modulus of the beam.
By utilizing the Hamilton principle and the consistent lineariza-

tion of the fully nonlinear beam theory, two coupled governing
differential equations for the rotating inclined beam are derived as

EA
�2u

�x2 + �A�2u − �A
�2u

�t2 + 2�A� sin �
�v
�t

= − �A�2�x + rh cos �� �7a�

EI
�4v
�x4 −

�

�x
�Np

�v
�x
	 − �A�2v sin2 � + �A

�2v
�t2 + 2�A� sin �

�u

�t

= − �A�2rh sin � sin � �7b�

where I is the moment of inertia of the beam. The last terms on
the left hand side of Eq. �7a� and �7b� are the Coriolis forces in
the axial and the transverse directions, respectively. The associ-
ated boundary conditions are as follows:

at x = 0: v = 0 �8a�

�v
�x

= tan � �8b�

u = 0 �8c�
and

at x = L: EI
�3v
�x3 = 0 �9a�

EI
�2v
�x2 = 0 �9b�

EA
�u

�x
= 0 �9c�

where Np is a centrifugal stiffened force and used to be considered
as the steady state normal force Np=EA�du /dx� �14,18�. The sec-
ond term in Eq. �7b� is a nonlinear term induced from the nonlin-
ear strain displacement relation �5�. The steady state normal force
Np is determined in the following.

For steady state deformations, the differential equation �7a� is
reduced to

EA
d2u

dx2 + �A�2u = − �A�2�x + rh cos �� �10�

The solution that satisfies the associated boundary conditions �8c�
and �9c� is

u�x� = rh cos � · cos
�

L
x + � L

� cos �
+ rh cos � · tan �	sin

�

L
x

− �x + rh cos �� �11�

where �=
� /E�L is a dimensionless quantity. As a result,

Np = EA
du

dx
= EA�−

�

L
rhcos � · sin

�

L
x

+ � 1

cos �
+

�rh cos � · tan �

L
	cos

�

L
x − 1� �12�

If � is relatively small and one can retain two terms in the power
series approximation of the above trigonometric functions, it is
reduced to

Np = �A�2�rh�L − x�cos � +
1

2
�L2 − x2�� �13�

If the inclination angle � is zero, the governing differential equa-
tions �7a� and �7b� and Np will be the same as those given by Lin
�19�, after ignoring the shear deformation and the rotary inertia
effects.

3 Two Subsystems
The vibration system, Eqs. �7�–�9�, can be considered as the

superposition of a static subsystem and a dynamic subsystem by
assuming the displacements as

u = us�s� + ud�s,t�

Fig. 1 Geometry and coordinate system of a rotating inclined
beam
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v = vs�s� + vd�s,t� �14�

where us and vs are the centroidal static displacements in the axial
and the transverse directions, respectively. They are time indepen-
dent variables. ud and vd are the centroidal dynamic displace-
ments. in the axial and the transverse directions, respectively.

3.1 Static Subsystem. The static subsystem contains two un-
coupled subsystems in terms of the transverse and the axial dis-
placements, respectively. The governing equation for the trans-
verse static displacement is

EI
d4vs

dx4 −
d

dx
�Np

dvs

dx
	 − �A�2�sin2 ��vs = − �A�2rh sin � · sin �

�15�

and the associated boundary equations are

at x = 0: vs = 0 �16a�

dvs

dx
= tan � �16b�

and

at x = L: EI
d3vs

dx3 = 0 �17a�

EI
d2vs

dx2 = 0 �17b�

The governing equation for the axial static displacement is

EA
d2us

dx2 + �A�2us = − �A�2�x + rh cos �� �18�

and the associated boundary equations are:

at x = 0: us = 0 �19�

and

at x = L: EA
dus

dx
= 0 �20�

This subsystem will have no influence on the free vibration of the
beam system.

Dynamic Subsystem. The free vibration of the beam system is
governed by dynamic subsystem. The governing differential equa-
tions for the sub-system are two coupled differential equations

EA
�2ud

�x2 + �A�2ud − �A
�2ud

�t2 + 2�A� sin �
�vd

�t
= 0 �21a�

EI
�4vd

�x4 −
�

�x
�Np

�vd

�x
	 − �A�2vd sin2 � + �A

�2vd

�t2

+ 2�A� sin �
�ud

�t
= 0 �21b�

The associated dynamic boundary conditions are

at x = 0: vd = 0 �22a�

�vd

�x
= 0 �22b�

ud = 0 �22c�

and

at x = L: EI
�3vd

�x3 = 0 �23a�

EI
�2vd

�x2 = 0 �23b�

EA
�ud

�x
= 0 �23c�

It is easy to see that when the Coriolis force is not considered, the
two governing differential equations of the system are indepen-
dent.

4 Uncoupled Governing Characteristic Differential
Equations

For time-harmonic vibration of a rotating inclined beam with
angular frequency �, one assumes

vd�x,t� = Ṽ�x�ei�t and ud�x,t� = Ũ�x�ei�t �24�
In terms of the following dimensionless parameters

V̄ =
Ṽ

L
, Ū =

Ũ

L
, � =
�A

EI
�L2

Lz = L
A

I
, 	 =

rh

L
, 
 =

x

L
�25�

� = Lz� =
�A

EI
�L2, Np =

Np

�A�2L2

the governing characteristic differential equations Eq. �21a� and
�21b� can be expressed as

V̄�4� − �2�NpV��� − ��2 + �2 sin2 ��V̄ + 2i���sin ��Ū = 0

�26a�

Ū� +
��2 + �2�

Lz
2 Ū +

2i�� sin �

Lz
2 V̄ = 0 �26b�

where the prime is the derivative with respect to the dimensionless
variable 
 and the dimensionless axial centrifugal force is

Np = Ca sin
�

Lz

 + Cbcos

�

Lz

 −

Lz
2

�2 �27�

In the above expression, Ca and Cb are, respectively,

Ca = −
Lz

�
	 cos �

Cb =
Lz

2

�2 cos
�

Lz

+
Lz

�
�tan

�

Lz
		 cos � �28�

When �=� /Lz is relatively small, Np can be reduced to

Np = 	�1 − 
�cos� +
1

2
�1 − 
2� �29�

The associated dimensionless boundary conditions are

at 
 = 0: V̄ = 0 �30a�

V̄� = 0 �30b�

Ū = 0 �30c�
and

at 
 = 1: V̄� = 0 �31a�

V̄� = 0 �31b�
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Ū� = 0 �31c�
By simple arithmetic operation, the two coupled governing

equations �26a� and �26b� can be decoupled and expressed as a

six-order ordinary differential equation in terms of V̄

V̄�6� + a4V̄�4� + a3V̄� + a2V̄� + a1V̄� + a0V̄ = 0 �32�

where

a0 =
��2 + �2���2 + �2 sin2 �� + 4�2�2 sin2 �

Lz
2

a1 =
��2 + �2��2

Lz
2 Np� − �2Np�

a2 = − ��2 + �2 sin2 �� − 3�2Np� +
��2 + �2��2

Lz
2 Np �33�

a3 = − 3�2Np�

a4 = − �2Np −
��2 + �2�

Lz
2

The associated boundary conditions are

at 
 = 0: V̄ = 0 �34a�

V̄� = 0 �34b�

V̄�4� − �2NpV̄� − �2Np�V̄� − ��2 + �2 sin2��V̄ = 0 �34c�

and

at 
 = 1: V̄� = 0 �35a�

V̄� = 0 �35b�

V̄�5� − �2NpV̄� − 2�2Np�V̄� − ��2 + �2 sin2 � + �2Np��V̄� = 0

�35c�

5 Fundamental Solutions and Frequency Equation
The decoupled governing differential equation �32� is a six-

order ordinary differential equation with variable coefficients. In
general, the exact fundamental solutions are not available. How-
ever, if the coefficients of the differential equation can be ex-
pressed in the following polynomial form

a0 = 

i=0

n0

di

i, a1 = 


i=0

n1

ei

i, a2 = 


i=0

n2

f i

i, a3 = 


i=0

n3

gi

i,

a4 = 

i=0

n4

hi

i �36�

where upper terms in the summations, n0, n1, n2, n3, and n4,
denote the order of the polynomials ai�
� , i=0–4. Then the six
linearly independent fundamental solutions, wi�
� , i=1−6, of the
differential equation �32�, which satisfy the following normaliza-
tion condition at the origin of the coordinate system

�
w1�0� w2�0� w3�0� w4�0� w5�0� w6�0�
w1��0� w2��0� w3��0� w4��0� w5��0� w6��0�
w1��0� w2��0� w3��0� w4��0� w5��0� w6��0�
w1��0� w2��0� w3��0� w4��0� w5��0� w6��0�
w1

�4��0� w2
�4��0� w3

�4��0� w4
�4��0� w5

�4��0� w6
�4��0�

w1
�5��0� w2

�5��0� w3
�5��0� w4

�5��0� w5
�5��0� w6

�5��0�
�

= �
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

� �37�

can be obtained by using the method of Frobenius and extending
the works done by Stafford and Giurgiutiu �20,21� and Lee and
Kuo �22�. Otherwise, the approximated solutions can be obtained
by following the algorithm developed by Lee �23�.

The six independent solutions are assumed to be in the form of

wi�
� = 

n=0

�

ki,n
n, i = 1,2, . . . ,6 �38a�

where

for w1�
�:k1,0 = 1,k1,1 = k1,2 = k1,3 = k1,4 = k1,5 = 0

for w2�
�:k2,1 = 1,k2,0 = k2,2 = k2,3 = k2,4 = k2,5 = 0

for w3�
�:k3,2 = 1/2,k3,0 = k3,1 = k3,3 = k3,4 = k3,5 = 0
�38b�

for w4�
�:k4,3 = 1/6,k4,0 = k4,1 = k4,2 = k4,4 = k4,5 = 0

for w5�
�:k5,4 = 1/24,k5,0 = k5,1 = k5,2 = k5,3 = k5,5 = 0

for w6�
�:k6,5 = 1/120,k6,0 = k6,1 = k6,2 = k6,3 = k6,4 = 0

Upon substituting Eqs. �36� and �38� into Eq. �32� and collecting
the coefficients of like powers of 
, the following recurrence for-
mula can be obtained as

ki,m+6 =
− 1

�m + 6��m + 5� ¯ �m + 1�


��

j=1

m

�m − j + 6� ¯ �m − j + 1�ki,m−j+6�
+ �


j=0

m

�m − j + 4� ¯ �m − j + 1�hjki,m−i+4�
+ �


j=0

m

�m − j + 3� ¯ �m − j + 1�gjki,m−j+3�
+ �


j=0

m

�m − j + 2��m − j + 1�f jki,m−j+2�
+ �


j=0

m

�m − j + 1�ejki,m−j+1� + �

j=0

m

djki,m−j��
�39�

Journal of Applied Mechanics MAY 2007, Vol. 74 / 409

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



m = 0,1, ¯ → �

With this recurrence formula, the six exact normalized fundamen-
tal solutions �38� can be generated. Therefore, the general solution
of the system is

V̄�
� = 

i=1

6

ciwi�
� �40�

where �ci� are the constants to be determined.

Substituting the general solution into the associated boundary
conditions, it yields a set of equations

�Bij��ci� = 0, i, j = 1:6 �41�

where

Bij = �
1 0 0 0 0 0

0 1 0 0 0 0

− ��2 + �2 sin2 �� − �2Np� − �2Np 0 1 0

w1��1� w2��1� w3��1� w4��1� w5��1� w6��1�
w1��1� w2��1� w3��1� w4��1� w5��1� w6��1�

s1 s2 s3 s4 s5 s6

� , �42�

in which si , i=1−6 are

�
s1

s2

s3

s4

s5

s6

� = �
w1��1� w1��1� w1��1� w1

�5��1�
w2��1� w2��1� w2��1� w2

�5��1�
w3��1� w3��1� w3��1� w3

�5��1�
w4��1� w4��1� w4��1� w4

�5��1�
w5��1� w5��1� w5��1� w5

�5��1�
w6��1� w6��1� w6��1� w6

�5��1�
�


�
− ��2 + �2 sin2 � + �2Np��

− 2�2Np�

− �2Np

1
� �43�

As a result, the natural frequencies of the rotating inclined beam
can be obtained from the following frequency equation,

�Bij� = 0 �44�

It should be mentioned that the proposed power series solutions
converge when the radius of convergence is less than/equal to 1.
In this paper, the problem is described in terms of dimensionless
variables. The dimensionless variable 
 used to express the fun-
damental solutions and the coefficients of the governing differen-
tial equation is confined within the interval �0, 1�. In addition, the
governing differential equation is a regular differential equation.
The coefficients of the differential equation are analytic functions.
All the physical quantities are finite at the boundaries. Therefore,
the solutions converge. The accuracy of the numerical results will
be checked and compared with those in the existing literature in
the later section.

6 Frequency Relations
The natural frequencies of the system can be numerically de-

termined by the method revealed in the previous section. How-
ever, most of the numerical results can only provide partial quali-
tative conclusions. In addition, it requires a tremendous computer
calculation. In this section, several qualitative relations are ex-
plored without a numerical analysis.

6.1 Frequency Relations For the Systems With Different
Inclination Angle and Hub Radius. Consider two dynamic sys-
tems with the same physical parameters, except the inclination
angle � and the hub radius rh. In terms of dimensionless quanti-
ties, they are � and 	. To specify two different systems, subscripts
“a” and “b” are added to the associated physical parameters.

It can observed that if

	a cos �a = 	a cos �b �45�
then the governing characteristic differential equations �26�–�28�
and the associated boundary conditions, Eqs. �30� and �31�, of two
dynamic systems will be the same. Therefore, the fundamental
solutions and the natural frequencies of two systems will be the
same. In addition, it is well known that if one increases the hub
radius of the rotating beam, the induced centrifugal force will be
increased. Consequently, the natural frequencies are increased
�13�.

Based on the two facts, the following two conclusions can be
drawn.
�1� For two dynamic systems with the same physical parameters
except the inclination angle and the hub radius, if 	a cos �a
=	b cos �b, the natural frequencies of two systems will be the
same.
�2� If the hub radius is not zero and the inclination angle of the
dynamic system is increased, the natural frequencies decrease.
It should be mentioned that the two conclusions are valid for both
systems with and without considering the Coriolis force effect.

6.2 Frequency Relations For the Systems Without Coriolis
Force Effect. If the Coriolis force is not considered, the flexural
and the longitudinal motions of the beam are independent. The

Table 1 Dimensionless fundamental flexural natural frequen-
cies of a rotating beam „Lz=70,�=0,�=90…

	 � Presenta Presentb Ref. �9�b Ref. �13�b

0 2 3.6220 3.6195 3.6196 3.6196
10 5.1362 4.9588 4.9700 4.9703

1 2 4.4009 4.3977 4.3978 4.3978
10 13.342 13.044 13.048 13.049

5 2 6.6481 6.6429 6.6430 6.6430
10 27.862 27.306 27.266 27.276

aWithout the Coriolis force effect.
bWith the Coriolis force effect.
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governing characteristic differential equation for the flexural mo-
tion can be reduced from Eq. �26a� by taking off the Coriolis force
term. If all the physical parameters of two different systems are
the same except the setting angle and the natural frequencies, it
can be observed that if the relation

�2 sin2 �a + �a
2 = �2 sin2 �b + �b

2 �46�

exists, then the reduced governing characteristic differential equa-
tions and the associated boundary conditions of two dynamic sys-
tems will be the same. This relation reveals the following.

�1� If all the physical parameters of two different vibration sys-
tems are the same except the setting angle, when the setting
angle is less than 90°, the larger the setting angle is, the
smaller the natural frequencies are.

�2� The influence of the setting angle on the flexural natural
frequencies of a beam rotating at high speed is greater than
that of a beam rotating at low speed.

The frequency relations revealed from Eqs. �45� and �46� will
also be verified numerically in the next section.

The governing characteristic differential equation for the longi-
tudinal motion can be reduced from Eq. �26b� by taking off the
last term, the Coriolis force term, on the left hand side of the
equation. It can be observed that if the following relation exists,
the reduced governing characteristic differential equations and the
associated boundary conditions of two dynamic systems are the
same

��a
2 + �a

2�
Lz,a

2 =
��b

2 + �b
2�

Lz,b
2 �47�

or

��2 + �2�
�L2

E
= const �48�

This relation reveals the following.

�1� For the longitudinal vibration of rotating beams with con-
stant material and geometric properties, Lz,a=Lz,b, the natu-
ral frequencies will decrease if the rotating speed is in-
creased. This conclusion is converse to that for the flexural
vibration of rotating beams.

�2� At a constant rotating speed, the longitudinal natural fre-
quencies decrease as the length of the beam is increased.

The relation �47� can also be obtained from the eigenfunction
solution of the dynamic system. The eigenfunctions that satisfy
the differential equation �26b� and the associated boundary condi-
tions �30c� and �31c� are

Ū = sin kn
 �49�

where kn=
��n
2+�2� /Lz

2=n� /2, n=1,3 ,5, L are the wavenum-
bers. It can be found that the results are consistent.

7 Numerical Results
To illustrate the previous analysis and the accuracy of the nu-

merical analysis, several numerical results are presented and dis-
cussed.

Table 2 First two natural frequencies of rotating beams with different � and �, those satisfying
the frequency relation �a cos �a=�b cos �b„�=90° ,Lz=70…

� �

	=1,cos �=1 	=2,cos �=1/2

With Coriolis
force effect

Without Coriolis
force effect

With Coriolis
force effect

Without Coriolis
force effect

0.5 �1
3.5780 3.5782 3.5780 3.5782

�2
22.1143 22.1145 22.1143 22.1145

1.0 �1
3.7575 3.7581 3.7575 3.7581

�2
22.3521 22.3527 22.3521 22.3527

1.5 �1
4.0376 4.0392 4.0376 4.0392

�2
22.7427 22.7441 22.7427 22.7441

2.0 �1
4.3977 4.4009 4.3977 4.4009

�2
23.2784 23.2807 23.2784 23.2807

3.0 �1
5.2826 5.2921 5.2826 5.2921

�2
24.7433 24.7487 24.7433 24.7487

Table 3 First three natural frequencies of rotating beams with different � and �, those satis-
fying the frequency relation �2 sin2 �a+�a

2=�2 sin2 �b+�b
2
„�=0,�=1,Lz=70…

� �

�a=30°

�b=90°

Present Prediction via Eq. �46�

With Coriolis
force effect

Without Coriolis
force effect

With Coriolis
force effect

Without Coriolis
force effect

With Coriolis
force effect

Without Coriolis
force effect

1 �1
3.8564 3.8566 3.7575 3.7581 3.7579 3.7581

�2
22.3693 22.3695 22.3521 22.3527 22.3525 22.3527

�3
62.0409 62.0411 62.0345 62.0350 62.0349 62.0351

2 �1
4.7283 4.7295 4.3977 4.4009 4.3996 4.4009

�2
23.3445 23.3451 23.2784 23.2807 23.2802 23.2808

�3
63.0596 63.0601 63.0343 63.0363 63.0358 63.0363

3 �1
5.8915 5.8955 5.2826 5.2921 5.2877 5.2922

�2
24.8835 24.8847 24.7433 24.7487 24.7475 24.7487

�3
64.7175 64.7187 64.6619 64.6665 64.6653 64.6665
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In Table 1, the fundamental flexural natural frequencies of the
rotating beam without inclination angle, obtained by the present
numerical method, are compared with those in the existing litera-
ture. It can be observed that the numerical results are in good
agreement.

The numbers in the third and fourth columns of Table 2 are the
first two natural frequencies, determined by the present numerical
method, of system “a,” considering and without considering the
Coriolis force effect, respectively. The numbers in the fifth and the
sixth columns are the corresponding natural frequencies, deter-
mined by the present numerical method, of system “b.” The physi-
cal parameters of these two systems satisfy the frequency relation,
Eq. �45�. It can be found that the two sets of natural frequencies
are all the same. This verifies the first conclusion revealed from
the frequency relation, Eq. �45�.

Table 3 is given to illustrate the fourth conclusion revealed
from the frequency relation, Eq. �46�. The numbers in the third,
fourth, fifth, and sixth columns of Table 3 are the first three natu-
ral frequencies, determined by the present numerical method, of
two different systems considering and without considering the Co-
riolis force effect, respectively. The seventh and eighth columns
are the corresponding natural frequencies, determined directly by
using the frequency relation, Eq. �46�, based on the data given in
the third and the fourth columns. It can be found that the last two
sets of natural frequencies are completely consistent.

From Tables 1–3, it can also be found that the fundamental
natural frequencies of the rotating beam considering the Coriolis
force effect are higher than those of the beam without considering
the Coriolis force effect.

Figures 2 and 3 show the influence of the setting angle and the
inclination angle on the fundamental natural frequencies of rotat-
ing cantilever beams with and without a hub radius, respectively.
From Fig. 2, it can be observed that when the hub radius is not
zero and the inclination angle of the dynamic system is increased,
the natural frequencies decrease. The numerical results are consis-
tent with the second conclusion revealed from the frequency rela-
tion, Eq. �45�.

From Fig. 3, it can also be found that when the hub radius is
zero, the inclination angle will have no influence on the natural
frequencies of the dynamic system. It is due to the fact that when
	=0, the coefficients in the governing characteristic differential
equation �32� will not contain the parameter of inclination angle.

Both Figs. 2 and 3 also show that the natural frequencies de-
crease as the setting angle is increased. This result is the same as
that for the rotating beam without inclination angle �17�.

Both Figs. 4 and 5 show that the influences of the setting angle
and the inclination angle on the second natural frequencies of
rotating cantilever beams with and without the hub radius are the
same as those on the fundamental natural frequencies of the rotat-
ing beams. As a matter of fact, the two conclusions revealed from
the frequency relation, Eq. �45�, are valid for all the natural fre-
quencies.

Figures 6 and 7 show that the influence of the slenderness ratio
Lz, the dimensionless rotating speed �, and the inclination angle �
on the fundamental natural frequencies of rotating cantilever
beams with and without considering the Coriolis force effect, re-
spectively. The numerical results show that the Coriolis force ef-

Fig. 2 Influence of the setting angle � and the inclination
angle � on the fundamental natural frequencies of a rotating
cantilever beam with hub radius „�=1,�=5,Lz=70…

Fig. 3 Influence of setting angle � and inclination angle � on
the fundamental natural frequencies of a rotating cantilever
beam without hub radius „�=0,�=5,Lz=70…

Fig. 4 Influence of setting angle � and inclination angle � on
the second natural frequencies of a rotating cantilever beam
with hub radius „�=1,�=5,Lz=70…

Fig. 5 Influence of setting angle � and inclination angle � on
the second natural frequencies of a rotating cantilever beam
without hub radius „�=0,�=7,Lz=70…
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fect on the natural frequencies will increase when the slenderness
ratio is decreased and the rotating speed is increased.

8 Conclusions

By utilizing the Hamilton principle and the consistent lineariza-
tion of the fully nonlinear beam theory, two coupled governing
differential equations for a rotating inclined beam are successfully
derived. Both the extensional deformation and the Coriolis force
effect are considered. The exact series solution of the system is
developed. The frequency relations and analytical numerical re-
sults reveal the following general qualitative conclusions.

�1� For two dynamic systems with the same physical param-
eters except the inclination angle and the hub radius, if
	a cos �a=	b cos �b, the natural frequencies of two sys-
tems will be the same.

�2� If the hub radius is not zero and the inclination angle of the
dynamic system is increased, the natural frequencies de-
crease.

�3� When the hub radius is zero, the inclination angle will have
no influence on the natural frequencies of the dynamic sys-
tem.

�4� If the Coriolis force effect is ignored and all the physical
parameters of two different flexural vibration systems are
the same except the setting angle, when the setting angle is
less than 90°, the larger the setting angle, the smaller the
natural frequencies.

�5� If the Coriolis force effect is ignored, the influence of the
setting angle on the flexural natural frequencies of a beam
rotating at high speed is greater than that of a beam rotating
at low speed.

�6� For the longitudinal vibration of rotating beams with con-
stant material and geometric properties, Lz,a=Lz,b, the natu-
ral frequencies will decrease if the rotating speed is in-
creased. This conclusion is converse to that for the flexural
vibration of rotating beams.

�7� At a constant rotating speed, the longitudinal natural fre-
quencies decrease, as the length of the beam is increased.

�8� The Coriolis force effect on the natural frequencies will
increase when the slenderness ratio is decreased and the
rotating speed is increased.
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On the Vibration Isolation of
Flexible Structures
Although the study of vibration isolation has a very long history, when an isolated
structure is so flexible that it cannot be properly approximated with a rigid body or a
single-degree-of-freedom model, its vibration isolation brings about some new questions
and problems. By transforming the dynamic equation of motion of the coupled structure
formed by the isolator and the isolated structure into the modal space and following the
tradition of studying features of the vibration transmissibility across the isolator, ques-
tions and problems associated with the flexible structure vibration isolation are studied.
It is found from the study that a lower isolation frequency and a higher damping level can
both increase the isolation effectiveness, the isolated structure is a vibration absorber to
the isolator, and a combination of the vibration isolation and the vibration attenuation
can be more effective in mitigating the vibration. A numerical example of the whole
spacecraft vibration isolation has proved the above conclusions.
�DOI: 10.1115/1.2201882�

1 Introduction
Vibration isolation is an effective way of mitigating the vibra-

tion of a structure or reducing the vibration transmission of a
vibration source to its surroundings. Research into vibration iso-
lation has a very long history, some research results have already
been included in many textbooks �1,2�, and there are also many
books devoted specially to the study of vibration isolation �3�.
Applications of the vibration isolation technique have also been
from machinery systems, vehicles, and buildings such traditional
areas extended to many new areas, for example spacecrafts �4�.

Traditionally, for studying the theory, explaining phenomena,
etc., the structure being isolated is often simplified as a rigid body
or with only one degree of freedom. With these simplified models,
the concept of vibration transmissibility has been developed for
defining the effectiveness of isolation, and thus the transmissibil-
ity becomes the basis of the research from which such concepts
and conclusions as isolation frequency and the function of damp-
ing are derived. However, when the flexibility of an isolated struc-
ture is so high that it cannot be approximated with these simplified
models, the question about whether those concepts and conclu-
sions thus derived are still valid or not, should be answered. As a
direct consequence, the suitability of the transmissibility for de-
scribing the effectiveness of the isolation has been taken as a
question in some researches. Because of the coupling between the
isolator and the flexible structure, an expression for the transmis-
sibility is so complicated that usually the analysis has to rely on
numerical calculations, and hence it usually does not provide ex-
plicit relations among dynamic characteristics of the isolated
structure and the parameters of the isolator. If there is any analyti-
cal solution, the isolated structure should be simple, such as beam
or plate �5�. This difficulty not only makes the concepts and con-
clusions derived based on the simplified models obscure, but
sometimes also causes perplexity in practical applications.

An alternative approach of solving this problem is to drop the
transmissibility and seek other ways of defining the isolation ef-
fectiveness, such as power flow �2�. Nevertheless, mainly for his-

torical reasons, the transmissibility has been accepted widely in
nearly all engineering sections and engineers are accustomed to
the concept. Furthermore, vibration at the interface of two con-
nected structure sections, i.e., isolator and isolated structure, is
meaningful for many engineering applications, such as the whole
spacecraft vibration isolation where the vibration at the interface
is used as the input to the spacecraft for examining its suitability
for launching. More importantly, for the sake of ensuring the com-
pleteness and coherence of the vibration isolation theory, it is also
required that the transmissibility and consequently those concepts
derived from it should be extended to the isolation of flexible
structures.

In the present paper, the study will be focused on problems and
questions produced by the flexibility of isolated structures. The
transmissibility will still be used as the basis for the study. Fea-
tures of the transmissibility on the amplitude-frequency plane will
be related to dynamic characteristics of the isolated structures and
parameters of the isolator. With the relations such established, the
concept of isolation frequency and the function of damping are
reexamined. To facilitate the analysis, dynamic equations of mo-
tion will be transformed into the modal space, in which the influ-
ence of the flexibility represented by the modal parameters of the
isolated structure on the isolation effectiveness can be explicitly
expressed with analytical formulas.

2 Dynamic Equations of Motion in Modal Space
The dynamic equation of motion, which is in the form of the

finite element model, of the coupled structure formed by an iso-
lated structure on the top of an isolation structure �isolator�, for
example a flexible satellite on the top of a vibration isolation
platform as shown in Fig. 1, is

�
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Ẋ2

Ẋb
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Here the damping of the isolated structure is supposed to be zero
for simplifying the study. In Eq. �1�, M, C, and K represent the
mass, damping, and stiffness matrix, respectively, subscripts 1 and
2 denote the inner and boundary coordinates of the isolated struc-
ture, respectively, subscripts 3 and b denote the inner and bound-
ary coordinates of the isolator, respectively. In the equation, Kb is
the connection stiffness between the isolated structure and the

isolator, K22 and Kbb also contain the elements of connection stiff-
ness. In the equation, U is the excitation from the bottom of the
isolator.

To study the transmissibility, which can be defined in the fre-
quency domain as the function of the frequency, with the Fourier
transform, the previous equation is transformed into an equation
in the frequency domain as

�
− �2M1 + K11 K12

K21 − �2M2 + K22 Kb

Kb
T − �2Mb + j�Cbb + Kbb j�Cb3 + Kb3

j�C3b + K3b − �2M3 + j�C33 + K33

��
X̄1

X̄2

X̄b

X̄3

� = �
0

0

0

�j�Cu + Ku�Ū
� �2�

Since the flexibility of a structure means that the structure has
many natural frequencies, to discuss the influence of the structural
flexibility, the modal transformation will be introduced in the fol-
lowing part of this section. With the modal transformation �8�, the
transmissibility can be explicitly expressed as a function of the
natural frequencies both of the isolated structure and the isolator.
Let

	X̄1

X̄2


 = �Q̄s = ��1

�2
�Q̄s, �3�

and � is the modal matrix of the isolated structure with which the
physical parameter matrices of the structure can be diagonalized,
such that

Ds = �T�− �2M1 + K11 K12

K21 − �2M2 + K22
��

= diag
n=1,2,. . .,N


ksn − �2msn� , �4�

Substitute this coordinate transformation into Eq. �2�; there is

� Ds �2
TKb

Kb
T�2 − �2Mb + j�Cbb + Kbb j�Cb3 + Kb3

j�C3b + K3b − �2M3 + j�C33 + K33
��Q̄s

X̄b

X̄3

�
= �

0

0

�j�Cu + Ku�Ū� �5�

where Q̄s is the vector of modal coordinates and N is the number
of modes of the isolated structure.

With another modal transformation,

	X̄b

X̄3


 = �Q̄I = ��b

�3
�Q̄I �6�

and by supposing that the physical parameter matrices of the iso-
lator can be diagonalized with this modal matrix �, i.e.,

DI = �T�− �2Mb + j�Cbb + Kbb j�Cb3 + Kb3

j�C3b + K3b − �2M3 + j�C33 + K33
��

= diag
r=1,2,. . .,R


kIr − �2mIr + j�cIr� �7�

Eq. �5� can be further transformed into

� Ds �2
TKb�b

�b
TKb

T�2 DI
�	Q̄s

Q̄I


 = 	 0

�3
T�j�Cu + Ku�Ū


 �8�

This is an equation explicitly constituted from the modal param-
eters of the isolated structure and the isolator. In Eq. �7�, R is the
number of modes of the isolator with a fixed bottom boundary.

From Eq. �8�, modal responses of the isolator and the isolated
structure can be expressed as

Q̄I = �E + DI�−1�3
T�j�Cu + Ku�Ū �9�

and

Q̄s = − Ds
−1�2

TKb�bQ̄I = − Ds
−1��b�E + DI�−1�3

T�j�Cu + Ku�Ū
�10�

In Eqs. �9� and �10�,
Fig. 1 The finite element model of a satellite on the top of an
isolator
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E = − �b
TKb

T�2Ds
−1�2

TKb�b = − �
n=1

N

�ksn − �2msn�−1�b
T�n

T�n�b

�11�
where

� = �
�1

�2

�
�N

�
N�N2

, �n = �n
2TKb �n = 1,2, . . . ,N� ,

�n
2 is the part of modal vector corresponding to the connection

that is defined as the following,

�2 = ��1
2,�2

2, . . . ,�N
2 �N2�N,

N2 is the number of degrees of freedom of the isolated structure
that connect to the isolator. Obviously, �n defines the connection
condition.

A direct conclusion from Eqs. �9� and �10� is that the flexibility
of the isolated structure will introduce more resonant frequencies
to the coupled structure, and also the flexibility of the isolator.

3 “Anti-Resonance”
The phenomenon of “anti-resonance” usually appears when

some vibration absorbers are attached onto a structure, and at any
resonant frequency of these absorbers the vibration amplitude of
the main structure reaches to its minimum value in the neighbor-
hood of this frequency �6�. As a structure on the top of an isolator
is an attached structure to the isolator, if its damping level is low,
the “anti-resonance” phenomenon can also appear.

Equation �9� and Eq. �10� can be rewritten as the polynomial of
the frequency variable �, which are

Q̄I = Gs�− �
n=1

N

�b
T�n

T�n�b�
i=1
i�n

N

�ksi − �2msi� + DIGs�−1

�3
T�j�Cu

+ Ku�Ū �12�
and

Q̄s = − P��b�− �
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N

�b
T�n

T�n�b�
i=1
i�n

N

�ksi − �2msi�

+ DIGs�−1

�3
T�j�Cu + Ku�Ū �13�

where

Gs = �
n=1

N

�ksn − �2msn�

P = diag
n=1,2,. . .,N	�

i=1
i�n

N

�ksi − �2msi�

It can be seen from Eq. �12� that at any natural frequency of the
isolated structure, i.e.,

� = �sn = �ksnmsn
−1,

all modal responses of the isolator are zero. In other words, the
transmissibility of the vibration from the bottom boundary of the
isolator to the interface with the isolated structure is zero. Never-
theless, the modal responses of the isolated structure are not all
zero, and they are

q̄si = 	− �2n
T Kb�b��b

TKb
T�n

2�n
2TKb�b�−1�3

T�j�Cu + Ku�Ū i = n

0 i � n



�14�

This is a typical “anti-resonance” situation. In other words, with-
out the damping, the isolated structure becomes a flexible vibra-
tion absorber of the isolator. This is also true for a chain of struc-
tures connected together; the top one always is the vibration
absorber of others.

This “anti-resonance” phenomenon raises a question about the
evaluation of the isolation effect of an isolator. From the view-
point of the transmissibility, which is defined by the absolute
value of the ratio of the bottom boundary vibration of the isolator
to the vibration at the interface with the isolated structure, the
vibration transmitted to the structure is zero at this frequency.
However, because of the flexibility, the vibration of the isolated
structure is not zero. Therefore, for a flexibility structure, vibra-
tions at those concerned points should be used for evaluating the
isolation effect.

4 Isolation Frequency
If the flexibility of the isolated structure is not taken into ac-

count, an important index to the isolator is the isolation frequency,
which is defined as the square root of the stiffness of the isolator
divided by the mass of the isolated object. When only the first
natural frequency of the isolated structure is considered, a require-
ment on this defined isolation frequency is that it should be at
least smaller than �0.5 times of this natural frequency.

To study the case that all natural frequencies of the isolated
structure are involved, for the sake of obtaining an analytical so-
lution, the following assumptions will be made: all degrees of
freedom at the interface have same displacement and the isolator
only has one degree of freedom. With reference to Eq. �8�, these
assumptions can be mathematically expressed with the following
definitions

�b = �
1

1

�
1
�

N2�1

,�3 = 1, R = 1, DI = kI − �2mI + j�cI,

kI = Ku, cI = Cu, Q̄I = q̄I, Ū = ū .

Here q̄ and ū are scalar. With the above conditions and equations,
Eqs. �12� and �13� can be simplified as

q̄ = �− �
n=1

N

M−1msn
−1��sn

2 − �2�−1�n
2 + ��I

2 − mIM
−1�2

+ 2j	I��I��−1

�2j	I��I + �I
2�ū �15�

Q̄s = − 
ms1
−1��s1

2 − �2�−1�1,ms2
−1��s2

2 − �2�−1�2, . . . ,msN
−1��sN

2

− �2�−1�N�Tq̄ �16�

where

�n = �2n
T Kb�b, �I =� kI

M
, 	I =

cI

2�IM
,

and M is the total mass of the isolated structure. According to the
traditional definition, �I is the isolation frequency.

With this simplification, the transmissibility across the isolator
from the bottom boundary to the interface in the frequency do-
main can be written explicitly as
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� q̄

ū
� =� 4�2�I

2	I
2 + �I

4

���I
2 − �2mIM

−1� − �
n=1

N

�msnM�−1��sn
2 − �2�−1�n

2�2

+ 4�2�I
2	I

2

�17.1�

From equation �16�, it can be found that the transmissibility to a modal coordinate is

� q̄sn

ū
� =

��n�
msn��sn

2 − �2�� 4�2�I
2	I

2 + �I
4

���I
2 − �2mIM

−1� − �
n=1

N

�msnM�−1��sn
2 − �2�−1�n

2�2

+ 4�2�I
2	I

2

�17.2�

With the traditional definition of isolation, it is required that

� q̄

ū
� 
 1 �18�

When the excitation frequency is not equal to any resonant fre-
quency of the isolated structure and the coupled structure, this
equals to the requirement that

�mIM
−1�2 + �

n=1

N

�msnM�−1��sn
2 − �2�−1�n

2�2

� 2�I
2�mIM

−1�2 + �
n=1

N

�msnM�−1��sn
2 − �2�−1�n

2� �19�

Because

df���
d�

= 2��mIM
−1 + �

n=1

N

�msnM−1���sn
2 − �2�−2�n

2� � 0,

�20�

function

f��� = mIM
−1�2 + �

n=1

N

�msnM�−1��sn
2 − �2�−1�n

2 �21�

is a incremental function of the frequency variable � on condition
that the excitation frequency is not equal to any resonant fre-
quency of the isolated structure. Therefore, after a certain value of
the frequency, the inequality �19� will be satisfied. This frequency
can be considered as the effective frequency of the isolator.

If the value of function f��� is negative, inequality �19� is natu-
rally satisfied. When its value is positive, after it is larger than
2�I

2, i.e.,

�f��� =�mIM
−1�2 + �

n=1

N

�msnM�−1��sn
2 − �2�−1�n

2 � �2�I,

�22�

the transmissibility will be less than 1. Because f��� is the func-
tion of not only the frequency variable, but also all natural fre-
quencies of the isolated structure, the isolation frequency does not
mean that the isolator will be effective after the frequency variable
is larger than its �2 times. Instead, since f��� is an incremental
function of the frequency variable, the isolation frequency �I de-
fines, in fact, a critical value for the existence of the inequality
�22�, which is also the effective frequency equation when the sym-
bol of greater is replaced with the symbol of equal. A lower iso-
lation frequency means that the isolator will be effective earlier in
the frequency domain, or in other words, the isolator has a lower
effective frequency.

It can be seen from Eq. �16� that the quality of the isolation is
not only decided by the isolator itself, but also by the dynamic
characteristics of the isolated structure and the connection condi-
tion between them.

If it is also required that

� q̄sn

ū
� 
 1, �23�

in addition to those requirements on the effectiveness of the iso-
lator, the following condition should be satisfied, too,

��sn
2 − �2� �

��n�
msn

�24�

This indicates that the excitation frequency should be outside the
neighborhood of the “anti-resonance” frequency, whose radius is
defined by ��n � /msn.

5 Resonance of Coupled Structure
Factors that determining the performance of an isolator at the

resonant frequency of the coupled structure are also important to
the design and selection of the isolator. As a part of the coupled
structure, properties of the isolated structure will inevitably also
have a significant influence on the performance of the isolator.

If the damping of the isolated structure is neglected, at any
resonant frequency of the coupled structure, i.e., in Eq. �17.1�

��I
2 − �2mIM

−1� − �
n=1

N

�msnM�−1��sn
2 − �2�−1�n

2 = 0, �25�

there is

� q̄

ū
� =�1 +

�I
2

4�2	I
2 , �26.1�

or

� q̄

ū
� =�1 +

kI
2

�2cI
2 �26.2�

This means if the isolated structure is a flexible structure and
without any damping, at the resonant frequency of the coupled
structure, the transmissibility across the isolator cannot be less
than 1. Equation �26� also indicates that a lower resonant fre-
quency means a higher transmissibility. Apparently, a softer isola-
tor, i.e., a lower isolation frequency, and/or a high damping isola-
tor can reduce this transmissibility.

If the isolated structure has damping, the transmissibility can be
less than 1 at some resonant frequencies as
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� q̄

ū
� =

1

1 + �
n=1

N
�n

2	sn	I
−1�sn�I

−1msnM

��sn
2 − �2�2 + 4�2�sn

2 	sn
2

�1 +
�I

2

4�2	I
2 �27�

This result shows the importance of combining together the vibra-
tion isolation and the vibration attenuation, which is realized by
adding damping or increasing the damping level.

At the resonant frequency, the transmissibility from the bottom
of the isolator to a modal coordinate of the isolated structure is

� q̄sn

ū
� =

��n�
msn��sn

2 − �2�
�1 +

kI
2

�2cI
2 �28�

It can be seen that a larger deviation of the resonant frequency
from the natural frequencies of the isolated structure can decrease
the transmissibility more effectively.

6 Numerical Example
Figure 1 is the finite element model of a satellite on the top of

a whole spacecraft vibration isolation platform �7�. This is a
highly flexible satellite with the first order natural frequency as
low as about 14 Hz. Here, as the major purpose is to demonstrate
those conclusions obtained in the above sections, for the sake of
simplicity, only the vibration isolation in the vertical direction is
discussed. The interface surface between these two structures is
defined to be rigid.

In the vertical direction, the first order natural frequency of the
satellite is about 40 Hz. Figures 2 and 3 are the transmissibility in
dB across the isolation platform when the isolation frequency is
chosen as 10 and 18 Hz, respectively. Here, � denotes the damp-
ing ratio of the isolated structure. According to Eqs. �26� and �27�,
the isolation effect of a lower isolation frequency is better than
that of a higher isolation frequency. When the damping of the
isolated structure is set to zero, the “anti-resonance” phenomenon
can be clearly identified from these figures. The most obvious one
is at the frequency about 40 Hz, which is the natural frequency of
the satellite. As predicated by Eq. �27�, the damping in the isolated
structure can significantly reduce the transmissibility at the reso-
nant frequencies of the coupled structure. With the damping, the
“anti-resonance” phenomenon is not so obvious and even disap-
pears at some natural frequencies of the isolated structure.

When the isolation frequency is chosen as 50 Hz, which is
higher than the first order natural frequency of the satellite in the
vertical direction, instead of 50 Hz, as shown in Fig. 4, the fre-

quency of the first peak in the transmissibility becomes 33 Hz,
which is neither the isolation frequency nor a natural frequency of
the isolated structure. The isolation frequency loses its original
meaning here. If the results of 18 Hz isolation frequency and
50 Hz isolation frequency are put on one diagram of Fig. 5, two
major differences can be found, i.e., the frequency of the first peak
and the effective frequency of the isolator.

7 Discussion and Conclusion
As components of a coupled structure, dynamic characteristics

of both the isolator and the isolated structure will inevitably influ-
ence each other’s behavior. Comparing with the rigid body model
and the single-degree-of-freedom model, the flexibility model ba-
sically brings more resonant frequencies into the coupled struc-
ture. Reflected on the transmissibility, this fact means more peaks
in the curve of the transmissibility on the amplitude-frequency
plane. To reduce the vibration transmission across the isolator at
these resonant frequencies, a higher damping in the isolator is
helpful. Also, the damping in the isolated structure is important

Fig. 2 Isolation frequency 10 Hz „dotted line �=0, solid line
�=0.02…

Fig. 3 Isolation frequency 18 Hz „dotted line �=0, solid line
�=0.02…

Fig. 4 Isolation frequency 50 Hz „dotted line �=0, solid line
�=0.02…
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for further reducing the vibration transmission. In other words, for
achieving a better result, the vibration isolation should be com-
bined with the vibration attenuation.

Although the flexibility introduces many more resonant fre-
quencies, and because of the coupling between the isolator and the
isolated structure, the isolation frequency generally is not the
same as or very close to the frequency of the first peak in the

transmissibility curve along the frequency axis, a lower isolation
frequency still means that the isolation effect is better than that of
a higher one.

At the natural frequencies of the isolated structure �including
the connection stiffness to the isolator�, the isolated structure acts
as a vibration absorber to the isolator. If the damping level of the
isolated structure is low enough, there will be many “anti-
resonance” points on the transmissibility curve. Nevertheless, at
other frequencies, a lower transmissibility across the isolator still
indicates that the vibration at any point of the isolated structure is
lower.

In summary, to the vibration isolation of flexibility structures,
the transmissibility across the isolator is still a proper way of
defining the effectiveness of the isolation. The old conclusion,
which is deduced with the rigid-body model, about the function of
the damping in the isolation effectiveness is not valid in the case
of flexible structure isolation.

References
�1� Inman, D. J., 1994, Engineering Vibration, 1st ed., Prentice–Hall, Englewood

Cliffs, NJ.
�2� Mead, J. D., 1999, Passive Vibration Control, Wiley, UK.
�3� Rivin, I. E., 2003, Passive Vibration Isolation, ASME, New York.
�4� Zheng, G. T., 2003, “Parametric Studies of the Whole Spacecraft Vibration

Isolation,” AIAA J., 41, pp. 1839–1841.
�5� Sciulli, D., and Inman, D. J., 1998, “Isolation Design for a Flexible System,”

J. Sound Vib., 216, pp. 251–267.
�6� Nagaya, K., Kurusu, A., Ikai, S., and Shitani, Y. 1999, “Vibration Control of a

Structure by Using a Tunable Absorber and an Optimal Vibration Absorber
Under Auto-Tuning Control,” J. Sound Vib., 228, pp. 773–792.

�7� Liu, L. K., Liang, L., Zheng, G. T., and Huang, W. H., 2005, “Whole-
Spacecraft Passive Vibration Isolation Using Octo-Strut Platform,” J. Spacecr.
Rockets, 42, pp. 654–662.

�8� Meirovitch, L. 1997, Principles and Techniques of Vibrations, Prentice–Hall,
Englewood Cliffs, NJ.

Fig. 5 Transmissibility of 50 Hz isolation frequency „dotted
line… and 18 Hz isolation frequency „solid line… „�=0…

420 / Vol. 74, MAY 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



L. B. Freund
Division of Engineering,

Brown University,
Providence, RI 02912-9104
e-mail: freund@brown.edu

A Variational Principle Governing
the Generating Function for
Conformations of Flexible
Molecules
The generation of a random walk path under the action of an external potential field has
been of interest for decades. The motivation derives largely from the prospect of incor-
porating the nonlocal excluded volume effect through such a potential in characterizing
the statistical behavior of a long flexible polymer molecule. In working toward a con-
tinuum mean-field model, a central feature is a partial differential equation incorporating
the influence of the potential and governing the generating function for the dependence of
end to end separation distance of the molecule on its pathlength. The purpose here is to
describe an approach in which the differential equation is recast as a global minimization
of a functional. The variational approach is illustrated by an application to familiar
configurations, the first of which is a molecule attached at one end to a noninteracting
plane barrier in the presence of a uniform potential field. As a second illustration, the
generating function is sought for a free molecule for the case in which conformations
must be consistent with the excluded volume condition. This is accomplished by adapting
a local form of the Flory approach to the phenomenon and extracting estimates of the
expected end to end separation distance, the entropy and other statistical features of
behavior. By means of the variational principle, the problem is recast into a form that
admits a direct, noniterative analysis of conformations within the context of the self-
consistent field theory. �DOI: 10.1115/1.2201888�

1 Introduction
An attempt at a detailed description of the geometrical configu-

ration of a linear polymer macromolecule in space invariably
meets with significant complexity. Adjacent monomers in the
polymer typically have considerable freedom of relative motion
across shared bonds. As a result, the number of possible configu-
rations of a long molecule in space is enormous. If such a mol-
ecule is in a dilute solution or is otherwise free of external con-
straints, all such configurations are accessible. Understanding the
thermodynamic properties of polymers derives from a character-
ization of the accessible configurations through the principles of
statistical mechanics.

In those cases in which the behavior of each monomer in the
polymer chain is influenced only by its immediate neighbors
along the chain, the theory of random walk paths has provided an
effective tool for representing distributions of conformations. A
principal shortcoming of the classical random path description is
that it cannot account for the fact that two monomers in a chain
cannot occupy the same place in space at the same time, no matter
what their relative position along the chain might be. This is the
so-called excluded volume effect of polymer molecules, an effect
that produces a nonlocal constraint on admissible configurations
and thereby influences thermodynamic properties. The first suc-
cessful treatment of the effect was provided by Flory in 1949 and
was summarized in a monograph that appeared a few years later
�1�. The basic idea is that the polymer chain is assumed to exist as

a gas of its own monomers, and the real �nonideal� gas interac-
tions that arise lead to an estimate of the swelling of the molecule
due to this additional constraint.

In an effort to include the excluded volume effect within a
continuum mean field theory of polymer conformations, Edwards
�2� proposed the idea of studying random path generation in the
presence of an externally imposed potential field, with the even-
tual goal being the representation of nonlocal interactions within
the chain by means of an appropriately chosen potential. The work
led to a partial differential equation governing a probability dis-
tribution function for end to end separation distance of the mol-
ecule in the presence of an external potential field.

This partial differential equation is difficult to solve, even in
simple cases. Therefore, as an aid in extracting approximate solu-
tions and as a basis for numerical simulation studies, the formu-
lation is recast as a minimum principle through a variational ap-
proach. Representative applications of the principle are illustrated.
The first example is the case of a molecule attached at one end to
an impenetrable noninteracting plane surface with the other in
free, a case for which the exact solution of the governing partial
differential equation is known. The second example is the case of
a free molecule including the excluded volume effect, a configu-
ration for which exact solutions are not known.

2 Background
The notion of a random walk path has served as a cornerstone

concept in statistical mechanics of large flexible polymer mol-
ecules, as well as in other branches of science, and its features
continue to be of active interest �3�. The success of the concept
derives largely from its simplicity, and it is most easily described
in terms of a sequence of straight line segments of fixed length,
say b, strung out in a head-to-tail fashion in space. Starting at
some point O, the first line segment extends a distance b from O
in an arbitrary direction. The next segment extends from the end
of the first a distance b in an arbitrary direction in space, and so on
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until n such segments have been pieced together, ending at point
P. The result is a random walk path. The statistical distribution of
vertex positions and the probability distribution of end-to-end dis-
tance from O to P have been key to understanding Brownian
motion of small particles in a fluid or the statistics of conforma-
tions of long flexible polymer molecules.

Denoting the position of P by the vector r from O to P, let
p�r ,n� be the probability of finding the end of the path at point P
in space after n steps, located with respect to origin at O. This is
a scalar valued function of path end position with the property that
p�r ,n�dR is the fraction of all possible paths that end within an
infinitesimal volume dR at P. Alternatively, it is the number of
path ends per unit volume at P. Because every path must end
somewhere, it is necessary that

�
R3

p�r,n�dR = 1 �1�

where R3 is all of three-dimensional space accessible to the con-
figuration, that is, p�r ,n� is a probability distribution function.

In a pioneering paper by Chandrasekhar �4�, it was demon-
strated that, in the limit of very small b and very large n with nb
held fixed, the probability distribution function satisfies the linear
partial differential equation governing isotropic gradient-driven
diffusion, namely,

�np =
b2

6
�2p �2�

with pathlength �as represented by n for fixed b� replacing the role
of time in the classical counterpart. With this interpretation, the
parameter n becomes a continuous variable. The “diffusivity,”
b2 /6 in the case of �2�, depends to some degree on the details of
the model on which the derivation of the partial differential equa-
tion is based. Chandrasekhar used a lattice model, whereby all
step ends necessarily coincide with the points in a regular lattice.
With the interpretation of p�r ,n� as a spatial density, Eq. �2� ad-
mits the usual interpretation as a conservation condition. Accord-
ing to this interpretation, the local rate of change of density �np is
equal to the negative of the local divergence of the flux h
=−�b2 /6��p. The flux lines are not the paths themselves but,
instead, are the trajectories of path ends as n increases.

The partial differential equation �2� must be augmented by an
initial condition at n=0, and

p�r,0� = ��r� �3�

is commonly adopted as this condition in order to satisfy �3� for
arbitrarily small length. The right side of �3� is understood to be
the appropriate form of the Dirac delta function for whichever
coordinate system is adopted. If there is no spatial constraint, then
both g and ��g� are normally assumed to become vanishingly
small in the limit as r→�. The solution of �2� subject to the initial
condition �3� without boundary constraints is the classical spheri-
cally symmetric free space Green’s function,

p�r,n� = � 3

2�nb2�3/2

e−3r2/2nb2
�4�

which satisfies the normalization condition �1�.
The number of conformations ending within the infinitesimal

volume dR at radial distance r from O in a particular direction is
p�r ,n�dR. On the other hand, the number terminating between
radial distance r and r+dr in any direction is 4�r2p�r ,n�dr. If dr
is replaced by b �or any other small length parameter�, the parti-
tion function of conformations ending between r and r+b is
Z�r�=4�r2bp�r ,n�, so the entropy is S�r�=k ln Z�r�. The free
energy F is entirely entropic, so

F�r� = − TS�r� = kT� 3r2

2nb2 − ln
r2

b2� �5�

to within an additive constant, where k is the Boltzmann constant
and T is absolute temperature. The most probable end to end
separation distance 	r
 is then

	r
 =

�
0

�

re−F�r�/kT dr

�
0

�

e−F�r�/kT dr

= 2b� 2n

3�
. �6�

The quantity F��r� can be viewed as a generalized force acting
at the end of the molecule to maintain a separation distance r. The
expected value 	F��r�
 of this force is zero. The implication is that
a radial outward force is required to maintain conformations with
end to end distance greater than 	r
, whereas a radial inward force
is required to maintain conformations at smaller radii.

The most probable radius 	r
 calculated in �6� can be compared

to the estimate req=b�2n /3 obtained as an equilibrium condition,
that is, the value of r for which F��r�=0 with F��r��0. The latter
is slightly smaller than 	r
. In either case, the mean end to end
separation position �as opposed to distance� is zero in light of
spherical symmetry.

3 Effect of a Potential Field
In the preceding section, the process of generating a random

path was described without reference to interactions of the chain
links with their surroundings. The only factor controlling a par-
ticular step in the random walk was the endpoint of the previous
step. Beyond that, the direction of the next step was completely
arbitrary. In this section, the issue of generating a random walk
path in the presence of a potential field is reviewed.

Suppose that the scalar valued function of position kTu�r� de-
fines a potential energy field throughout the region of interest.
With potential energy defined in this way, u is dimensionless. Its
physical origin is immaterial for the time being. Before proceed-
ing, it is necessary to be more specific about the nature of the free
energy of interaction of the chain links with this potential. The
simplest point of view to adopt is that each link is insensitive to
the potential except at its endpoint. If this is so, then the potential
energy of the mth link with endpoint position rm is kTu�rm�. Con-
sequently, this point experiences a force −kT �u�r=rm

acting along
the potential gradient.

On the other hand, if all points on the link are equally sensitive
to the potential field, then each link senses a net force at its mid-
point that tends to push that link down the potential gradient. It
also senses a torque that tends to rotate the link into the tangent
plane of an equipotential surface in space, and so on. Still other
characterizations of the nature of interactions can be imagined.
The endpoint interactions mentioned first are the simplest to con-
sider, so that viewpoint is adopted for the remainder of the dis-
cussion. Conceptually, there is no difficulty in accommodating
other points of view. In general, the interaction energy per unit
volume equals the number of links per unit volume times the local
strength of the field. For example, consider all conformations end-
ing at some end to end distance r. Let ��r* ,r� be the density of
links of these conformations per unit volume at point r*. Then the
local contribution to the free energy is ��r* ,r�u�r*�dR*, where
dR* is a local volume element at point r*.

The generation of a random walk in a potential field has been
discussed often in the literature on polymer molecule conforma-
tions. Among the earliest treatments are those by Edwards �2� �see
Eq. 3.1�, de Gennes �5� �see Eq. 1.10� and Freed �6� �see Eq.
6.25�. In these cases, the influence of the potential energy field
was included in the formulation through a Boltzmann factor asso-
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ciated with each link, and a particular partial differential equation
governing the generating function g�r ,n�, rather than a probability
distribution function, was extracted. This equation has the form of
a Schrödinger equation with imaginary time, that is, the so-called
Feynman-Katz equation. Since then, many papers have appeared
in the literature which present results on the basis of this modified
diffusion equation.

The derivation of the modified field equation proposed by Ed-
wards, de Gennes, and Freed has been reviewed by Grosberg and
Khokhlov �7� �see Eq. 6.28� and the result has the form

�ng =
b2

6
�2g − u�r�g . �7�

The solution of this equation provides the generating function
g�r ,n� of conformations of length n beginning at an arbitrary
origin and ending at point r with respect to that origin. This par-
ticular generating function is commonly designated as the Green’s
function or the propagator of the molecule. Physically, it repre-
sents the partition function of the chain with fixed endpoints.
While some solutions of the differential equation in one space
dimension are well known, solutions for three-dimensional cases
are elusive, in general. In situations for which u is intended to
represent the excluded volume effect, the situation is more com-
plicated. Then, the potential depends on the spatial distribution of
monomers in the chain, but this distribution is unknown before the
equation is solved. Consequently, the process of analysis becomes
convoluted. As a basis for studying �7� when u is specified, a
variational approach is described in the section that follows. The
approach is then applied to a case of a molecule attached to a
noninteracting plane barrier in the presence of the simple potential
field. Then, as a second illustration, it is also applied to the case of
an isolated molecule for which conformations are restricted by the
excluded volume effect.

4 Variational Formulation
For a given state of the system at some value of n as repre-

sented by the fields g and u at that value of n, the essential feature
of the partial differential equation is that it prescribes how the
system leaves that state as n increases. A variational principle is
sought that has the same characteristic feature. Similar partial dif-
ferential equations have been analyzed in modeling the evolution
of material microstructure due to mass transport, and these have
been successfully addressed via a variational approach �8–10�.

To this end, each term in the partial differential equation is
multiplied by an arbitrary scalar function of position, say h�r ,n�,
and then integrated over the spatial domain of the differential
equation, say R. The result, following application of the diver-
gence theorem, is

�
R

h �ng dR = −�
R

�b2

6
� h · �g + ugh�dR +

b2

6 �
S

h � g · n dS ,

�8�

where S is the boundary surface of R. This provides the so-called
weak form of the partial differential equation. The differential
equation can be recovered by appeal to the arbitrariness of h.

Next, the function h is assigned a particular role, without com-
promising its arbitrariness, that permits the interpretation of �8� as
the vanishing of the first variation of a particular functional. Re-
call that the goal is to determine how the system leaves a certain
configuration represented by g and u as n increases from its cur-
rent value. If the rate of departure is denoted by f�r ,n� �which is
�ng for the exact solution� then the obvious choice for h is as an
arbitrary variation in f , say �f in the standard notation of the
calculus of variations. If f is an admissible rate of departure, then
f +�f is another admissible rate of departure. With that interpreta-
tion, the form of �8� is equivalent to the vanishing of the first
variation of a functional, that is,

�� = 0, �9�
where the functional is defined by

��f� =�
R

�1

2
f2 +

b2

6
� f · �g + ugf�dR . �10�

The variation operator � can be moved outside the integral sign
because neither g, u nor the domain R are altered when the rate of
departure is perturbed. Furthermore, in all cases of interest here
either �f or �g vanishes on S so that the boundary integral term in
�8� makes no contribution. When written in this way, it is evident
that the functional ��f� is stationary under arbitrary perturbations
in f when f is the actual rate of departure, that is, when f ��ng.
Furthermore, it can readily be verified that the second variation of
the functional is positive definite, so the functional is not only
stationary for the actual rate of change of the generating function
but it is also an absolute minimum there.

In light of the property of the functional as possessing an abso-
lute minimum value among all admissible conformations for the
exact solution, the variational form of the governing equation is
ideal as a basis for numerical simulation of the evolution process
by means of the finite element method. The objective here is more
modest, namely, to illustrate the variational approach toward ob-
taining approximate generating functions for a couple of non-
trivial configurations by exploiting its properties of being both
stationary and minimum for the exact generating function.

The variational principle �10� can be applied in the following
way to determine an approximate generating function. Suppose it
is assumed at the outset that g has the form

g�r,n� = G�r,�1�n�, . . . ,�M�n�� �11�

where G is an explicit function of its arguments but the functions
�m�n�, m=1, . . . ,M themselves are unknown. Then

f�r,n� = 

m=1

M
�G

��m
�m� �n� �12�

where the prime denotes differentiation with respect to n. Next,
the functional � can be evaluated in terms of the unknown func-
tions �m�n� and �m� �n�. In these circumstances, minimization of �
under variations in the rate f is equivalent to minimization with
respect to the M variables �m� �n� in the usual sense of functions of
several variables, that is,

��

��m�
= 0, m = 1, . . . ,M . �13�

This condition yields a set of M ordinary differential equations, in
general nonlinear, for the M functions �m�n�. The set of differen-
tial equations must be augmented by a suitable set of initial con-
ditions chosen to be compatible with the initial condition �3� in
any particular case. The solution of the differential equations pro-
vides an approximate generating function for the configuration of
interest. From the variational principle, it is known that the quality
of the approximation improves �or, at least, it does not diminish� if
the set of admissible functions, �11� is made richer in content.
This procedure is next demonstrated in a particular case for which
an exact solution is known.

5 A Simple Application of ��=0
The configuration considered is a flexible molecule of length nb

with one end bonded to an impenetrable, noninteracting plane
surface while the motion of the other end is unconstrained. Fur-
thermore, the region of space that is accessible to the molecule is
exposed to a spatially uniform potential field u�r�=u0. The objec-
tive is to determine the generating function g.

A convenient coordinate system in this case is the r�z cylindri-
cal system with z=0 being the barrier plane, r=z=0 being the
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attachment point on the barrier plane and the molecule being con-
fined to the half-space z	0. The generating function is subject to
the boundary condition g�r ,0 ,n�=0 for n�0. At remote points, g
is expected to decay exponentially to zero in magnitude. Finally,
the configuration is invariant under rotation about the z axis so g
is expected to be axisymmetric, that is, independent of �.

An admissible form of the generating function with these prop-
erties is

g�r,z,n� =
z

b4��n�e−
�n��r2+z2�/b2
�14�

where the powers of b have been chosen on dimensional grounds
and ��n�, 
�n� are unknown dimensionless functions of n. To be
compatible with the initial conditions �3�, these functions must
have the asymptotic characteristics

��n� →
3

n
� 3

2�n
�3/2

, 
�n� →
3

2n
�15�

as n→0+.
The rate of change of the generating function is then calculated

as in �12�, the functional � is evaluated, and the requirement that
it be minimum with respect to variations in ���n� and 
��n� is
imposed to obtain ordinary differential equations for the two un-
known functions. In the present case, these equations are found to
be

12
�n����n� + ��n��12u0
�n� + 10
�n�2 − 15
��n�� = 0

4
�n����n� + ��n��4u0
�n� + 2
�n�2 − 7
��n�� = 0. �16�

The possibility that ��n��0 and/or 
�n��0 was excluded in ex-
tracting these ordinary differential equations. The solution of �16�
consistent with �15� is

��n� =
3e−nu0

n
� 3

2�n
�3/2

, 
�n� =
3

2n
. �17�

It is readily verified by direct substitution that this provides the
actual solution to the initial-boundary value problem. This was
relatively easy to achieve in the present case because the exact
solution is known; the assumed form is consistent with the spatial
dependence of the exact solution and the minimum principle then
naturally selected the optimal functions ��n� and 
�n� to provide
the corresponding dependence on n.

The expected value of the distance of the endpoint of the mol-
ecule from its attachment point can be calculated in any of several
ways. With g�r ,z ,n� understood as the partition function �or sta-
tistical weight� for a molecule ending at a particular point with
coordinates �r ,� ,z� for any 0���2�, the expected value of the
end to end distance is

	�r2 + z2
 =

2��
0

��
0

�

�r2 + z2g�r,z,n�r dr dz

2��
0

��
0

�

g�r,z,n�r dr dz

= b�3�n

8
.

�18�

This expected value of end to end separation distance is about
18% larger than the expected end to end separation distance in the
absence of a confining barrier, as given in �6�. Because the free
energy due to the background energy field of uniform strength u0
is the same for all conformations, the expected value of end to end
distance is independent of the potential field.

A slightly different measure of the range of the bound molecule
is obtained in the following way. The partition function for all
conformations of the bound molecule that end on a particular
plane z=const is

Z�z,n� = 2��
0

�

g�r,z,n�r dr . �19�

In this case, the expected value of the distance of the free end of
the molecule from the barrier plane is

	z
 = b��n/6. �20�

6 Example With Excluded Volume
In this case, the equation governing the generating function is

again �7� with the potential u given by the product of the excluded
volume parameter v�b3 times the local density � of monomers in
the chain. This form of the potential follows from the viewpoint
that the excluded volume effect can be modeled by representing
the chain as a real �nonideal� gas of its links and retaining only the
first two terms of the virial expansion for energy per unit volume
in powers of spatial density of links. The task of calculating this
density for all conformations with a certain end to end separation
distance has been addressed by Dolan and Edwards �11�.

To determine this density by largely heuristic reasoning, sup-
pose that the notation for generating function is generalized for
the moment to reflect the positions of both ends of the chain. For
example, the generating function for a molecule starting at point
r0 and ending at point r at length n, the generating function is
g�r ,r0 ,n�. Then, the number of conformations that start at r0, pass
through the point r* at a particular length m, and end at the point
r at total length n is

g�r*,r0,m�g�r,r*,n − m� . �21�

Therefore, the number of such confirmations that pass through r*
at any length m in the range 0�m�n is

�
0

n

g�r*,r0,m�g�r,r*,n − m�dm . �22�

If the ends of the chain of length n would be fixed, then this
quantity would be the chain density at point r* in space. To ac-
count for the arbitrariness in the endpoint position r with respect
to the origin, it is necessary to sum �22� over the full range of r
and to normalize by the total number of conformations that are
accessible, yielding the result

��r*� =

�
0

n

g�r*,r0,m��
R

g�r,r*,n − m�dR dm

�
R

g�r,r0,n�dR

. �23�

The density � can depend on r* only through its magnitude r* due
to the spherical symmetry of the configuration.

The quantity � is not a physical density. Instead, it is the prob-
ability that, among all conformations, a link will lie within an
infinitesimal volume at point r*. Because all n links in the chain
must be somewhere, it is necessary that

4��
0

�

��r*�r*
2 dr* = n . �24�

It is readily verified that �23� satisfies this constraint. The density
� is used to determine the influence of the excluded volume effect
on conformations.

In terms of the density ��r*�, the potential field u is

u�r*� = v��r*� �25�

where v�b3 is the excluded volume parameter. This is the poten-
tial energy of interaction per link at radial distance r* in a particu-
lar direction due to repulsion by a molecule in any admissible
configuration.
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For purposes of applying the variational principle,

g�r,z� = � 3

2�b2�3/2���n� +
r

b
��n��e−
�n�r2/b2

�26�

is selected as an admissible generating function for this illustra-
tion. The quantities ��n�, ��n�, and 
�n� are unknown dimension-
less functions of n. To satisfy the initial condition, these functions
must have the asymptotic properties that

��n� →
1

n3/2 , 
�n� →
3

2n
, ��n� → 0 �27�

as n→0+. The functional �����n� ,���n� ,
��n�� can then be
evaluated. The requirement that the functional must be minimized
under variations in ���n�, ���n�, and 
��n� leads to three ordinary
differential equations for the unknown functions of length n. The
asymptotic conditions are interpreted as initial conditions at some
small but nonzero value of n. The differential equations are com-
plicated in form and no closed form solution is apparent. Recall
that the link density ��r*� at current length n depends on the
history of the generating function g�r ,m� for all lengths in the
range 0�m�n, the derivatives such as ���n� depend not only on
the current values of the unknown functions at length n but also
on the “histories” of these functions for all links up to n. However,
these equations are readily integrated numerically.This was done
for several choices of the initial value of n to ensure that there was
no sensitivity to the particular choice. For the case when v=b3,
graphs of the functions are shown in Fig. 1 for n in the range 1
�n�85. For large n, n
�n� flattens toward a value somewhat
below 3/2 whereas n3/2��n� continues to decline toward zero.

The shape of the generating function for n=50 is illustrated in
Fig. 2, also for the case when v=b3. While the one term represen-
tation of the generating function used in the variational principle
is not sufficiently rich in content to produce that function pre-
cisely, the result can be expected to qualitatively capture the in-
fluence of the excluded volume potential.

The expected value of the end to end distance is given as a
function of n by

	r
 =

�
0

�

r3g�r,n�dr

�
0

�

r2g�r,n�dr

. �28�

The measure 	r
 of statistical size of the molecule with v=b3 is
illustrated in Fig. 3 for n in the range 1�n�85. For comparison,
the corresponding result for v=0 as given in �4� is also shown by
the dashed line in the same figure.

The size of the configuration of the molecule can also be esti-
mated by means of equilibrium considerations, in the spirit of
Flory’s original estimates of the excluded volume effect, but this
issue is not pursued here.

Fig. 1 The dependence of the unknown functions �„n… and
�„n… appearing in „26… as determined by means of the varia-
tional principle. The deviations from their initial values shows
the influence of the excluded volume effect for the case when
v=b3

Fig. 2 The influence of the excluded volume of fact on the
shape of the generating function for an isolated molecule. The
curve shows the generating function g„r ,50… for the case in
which the excluded volume parameter is v=b3. For purposes of
comparison, the corresponding function for the case in which
the excluded volume effect is neglected is shown as a dashed
curve plotted against the right hand scale, the range of which is
approximately seven times the range of the left hand scale

Fig. 3 Estimate of the expected value of the end to end dis-
tance Šr‹ and the square root of the expected value of the
square of the distance Šr2

‹

1/2 for an isolated molecule as deter-
mined by „28… for excluded volume v=b3. Also shown „dashed…
for comparison is the expected value of radius when v=0
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7 Concluding Observations
The objective here has been to introduce a variational approach

for computing the generating function for a long flexible molecule
and to illustrate this approach in analyzing simple cases. The first
configuration was a molecule attached at one end to a plane non-
interacting barrier in the presence of a uniform potential field, a
case for which a simple closed form solution is known. Not sur-
prisingly, the variational approach reproduced the exact solution
when the possibility of doing so was included among the admis-
sible generating functions used in the minimum principle.

The second configuration studied was concerned with the influ-
ence of the excluded volume effect on conformations of a long
flexible molecule. The calculation was based on the physical ideas
introduced by Flory, but the analysis differed from the global ap-
proach in two fundamental ways. First, the interactions giving rise
to the change in conformation due to excluded volume were con-
sidered locally in the mean field analysis rather than globally.
Second, the estimate of molecule swelling due to excluded vol-
ume was based on the statistical expected value of end to end
separation distance rather than on the equilibrium estimate of size
based on minimizing global free energy.

The variational approach may have significant potential as a
basis for numerical analysis of such configurations. For example,
for the spherically symmetric configuration considered above, if
Gm�r� is a complete set of functions spanning the space of admis-
sible generating functions then g�r ,n� can be assumed in the form

g�r,n� = 

m

�m�n�Gm�r� . �29�

The variational approach then leads to a set of ordinary differen-
tial equations for the amplitudes �m�n�.
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Simulation of the Distortion
of Long Steel Profiles
During Cooling
A complex thermomechanical model for simulating the transient fields of the temperature,
microstructure, stress, strain, and displacement during quenching of steel profiles is
introduced. The thermoplastic material model is formulated on the basis of J2-plasticity
theory with a temperature- and phase fraction-dependent yield limit. Coupling effects
such as dissipation, phase transformation enthalpy, and transformation-induced plasticity
are considered. The validity of the model is verified by comparing the simulation results
with available experimental measurements. The introduced model serves as a basis for
optimizing the cooling conditions for reducing residual stresses and distortions. The
simulation results for T and L profiles of two different types of steel are described.
�DOI: 10.1115/1.2338050�

1 Introduction

Quenching processes are applied to long steel profiles after the
rolling process to produce profiles with reliable service properties.
The typical problem is the distortion that is occurring upon re-
sidual stresses. Profile distortion should be eliminated as it leads
to rework expenditure and creates problems associated with bear-
ing and bundling. Moreover, the residual stresses should be con-
trolled to prevent the crack initiation. The modeling of the cooling
process is difficult due to the complicated couplings among dif-
ferent physical and mechanical processes �1�. The main reason for
the distortion is the inhomogeneity of the temperature profile dur-
ing the cooling process which results in residual stresses, varying
phase fractions, etc. �2�. The cooling distortion of railway profiles
has already been extensively investigated by experiments. An
overview of the works can be found in the literature �3�, where the
experimental results for the residual stresses and deformations af-
ter quenching are presented. The distortion and residual stresses in
carburized thin strips are investigated by Prantil et al. �4�.

The thermoplasticity and metallurgical transformations estab-
lish the fundamental part of the problem. The distortion is due to
transformation-induced stresses and thermal stresses. The phase
transitions, temperature, and stresses must be accurately simulated
to determine the distortion. If the temperature and cooling condi-
tions are constant in the axial direction of the profile, all the other
fields are also constant. Consequently, a 2D mathematical model
with fewer degrees of freedom is enough for the simulations. This
reduction of the dimension simplifies not only the visualization of
the fields, but also the determination of the optimal cooling con-
ditions. This work indicates that the distortion can be significantly

reduced by an intensified cooling of the mass lumped parts of the
cross section. The atomized spray quenching technique �5,6�,
where the spraying water is atomized into fine droplets by means
of compressed air, is suitable to intensify the cooling of the mass
lumped regions, since the vapor film, which occurs in other
quenching techniques, is avoided. In this way the mass lumped
regions of the workpieces can be cooled more intensively than the
edges. Consequently, a uniform temperature distribution on the
surface and a reduced stress distribution inside the body with re-
duced distortion can be obtained.

2 Mathematical Modeling
In the following sections, the details of the mathematical model

for the temperature, microstructure, and stress computations are
given. Moreover, the distortion measure and the solution algo-
rithm used for computation are briefly described.

2.1 Temperature Field. The temperature field is modeled by
Fourier’s law of heat conduction with two additional heat source
terms. The first additional term accounts for the transformation
enthalpies, and the second term includes the heat generation by
mechanical energy dissipation. During the quenching processes,
the heat generated due to the mechanical work is negligibly small
as compared to the transformation enthalpies. The Fourier’s law is

�

�x
�k

�T

�x
� +

�

�y
�k

�T

�y
� +

�

�z
�k

�T

�z
� + qv = �cp

�T

�t
�1�

with boundary condition

k
�T

�nS
+ qS = 0. �2�

In Eqs. �1� and �2� k is the heat conductivity, qv is the heat source,
� is the mass density, cp is the specific heat, qS is the heat flux
through the body surface, and nS is the surface unit normal. All of
the material constants are assumed to be functions of the tempera-
ture T and the converted phase fractions �i. The dependency of the
material properties on the phase fractions �i can be expressed by
the arithmetic, geometric, harmonic, or other means.
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The heat flux qS through the boundary and internal heat source
qv are

qS = � · e · ��T4 − T�
4 � + ��T − T�� = ���T − T��

qv = ��y�̇eff
p + 	i=1

n Li · �̇i �3�

The heat flux qS is due to thermal radiation and heat convection,
where �� is the equivalent convection coefficient, T is the tem-
perature of the body surface, T� is the ambient temperature, � is
the view factor, e is the emissivity, and � is the Stefan Boltzmann
constant. The internal heat source qv is composed of latent heat
generation and dissipation of mechanical energy into heat, where

Li are the latent heats of transformation, �̇i are the rates of phase
conversion, � is the fraction of mechanical energy converted to
heat energy, �y is the yield strength, and �̇eff

p is the rate of effective
plastic strain.

The finite element method is used to solve Eq. �1�. For the case
of simplified �plane stress, plane strain, axis symmetric, and beam
case� 2D simulations, the six-node isoparametric triangular ele-
ment is implemented. The temperature field in the element is ap-
proximated by

Te � 	i=1
N Hi

eTi
e, �4�

where Ti
e are the element nodal temperatures, and N is the number

of nodes in the element. The quadratic element interpolation func-
tions are

He = �
1 − 3�r + s� + 2�r + s�2

4r�1 − r − s�
r�2r − 1�

4

s�2s − 1�
4s�1 − r − s�

	 . �5�

The domain is subdivided into finite elements and the temperature
of each element is represented by using element nodal tempera-
tures Ti

e and interpolation functions Hi
e. With this substitution, the

differential equation and the boundary condition are not identi-
cally satisfied, but are instead equal to an error term. The interpo-
lation functions are used as weight functions and the Galerkin’s
method is applied to minimize this error term and to get the sys-
tem of linear algebraic equations

KT + CṪ = F where

Kij = 	e=1
Nel


Ae

� Hi
ek � Hj

ehdA + 	e=1
Nel


Se

Hi
e��Hj

ehdS ,

Cij = 	e=1
Nel


Ae

Hi
e�cpHj

ehdA ,

Fi = 	e=1
Nel


Ae

Hi
eqvhdA + 	e=1

Nel

Se

Hi
e��T�hdS

.

�6�

The surface integrals are calculated only for those elements that
lay on the boundary. The summation symbol stands for an assem-
bly operator to construct the finite element system matrices.

The material properties of the phase mixture are calculated by
using the phase fractions and material properties of constituting
phases. Different homogenization methods are applied for differ-
ent material properties. The generalized homogenization equation
is given by

Zmix = �	i=1
n �iZi

N�
1
N , �7�

where Zmix stands for the mixture material property estimate and
Zi for the material property of ith phase. The arithmetic mean is
assumed for the density �, heat conductivity k, or heat capacity cp
with a value of N=1. The harmonic mean is assumed for the flow
stress �y with a value of N=−1. The geometric mean, Zmix
=exp�	i=1

n �i ln�Zi��, is assumed for the bulk modulus 
 or the
shear modulus � with a value of N=0.

2.2 Microstructure Field. The mathematical theory of the
phase transformation kinetics is still not well established. In gen-
eral, the time-temperature-transformation �TTT� diagrams which
are derived from experiments are used. Isothermal transformation
�IT� diagrams are convenient, since continuous cooling transfor-
mation �CT� diagrams for an arbitrary cooling process can be
calculated from IT diagrams by the methods described in literature
�7–11�.

There are two different types of phase transformation, namely
diffusional and martensitic transformations. For diffusional trans-
formations, the formation of the new phase is described by the
Kolmogorov-Johnson-Mehl-Avrami �12� equation,

�i = �i
eq�1 − exp�− ai · �tiso�bi�� , �8�

under isothermal conditions with temperature-dependent transfor-
mation parameters ai and bi for each phase. After an infinitely
long time, the phases achieve their equilibrium fractions �i

eq.
These equilibrium fractions are shown in Fig. 1 for the steel C45.

The transformation limit curves in the IT diagrams contain two
C-shaped curves for each phase transition. One is for the begin-
ning of the transformation and the other is for its end. Each curve
is approximated by the equation

��T� = d0 · exp
d1 + d2�TU − T�−n

T − TL
, �9�

which is proposed by Hougardy �13�. Here, TL and TU are the
lower and upper asymptotes of the curve, respectively. The other
parameters d0, d1, and d2 are uniquely defined if three points
��t1 ,T1� , �t2 ,T2� , �t3 ,T3�� on the limit curve and the exponent n are
given

Fig. 1 Equilibrium microstructure fraction for C45 steel
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d0 = t1exp� �T3 − TL��
13 − 
23�ln� t1

t3
� + �TL − T2��
12 − 
23�ln� t1

t2
�

�T1 − T2�
12 + �T3 − T1�
13 + �T2 − T3�
23
	 ,

d1 =

23�T2T3 − TL�T2 + T3� + TL

2� − 
12�T1T2 − TL�T1 + T2� + TL
2�

�T1 − T2�
12 + �T3 − T1�
13 + �T2 − T3�
23
ln� t1

t2
�

+

13�T1T3 − TL�T1 + T3� + TL

2� − 
23�T2T3 − TL�T2 + T3� + TL
2�

�T1 − T2�
12 + �T3 − T1�
13 + �T2 − T3�
23
ln� t1

t2
� ,

d2 =

�T3 − TL��T2 − T1�ln� t1

t2
� + �T3 − T1��TL − T2�ln� t1

t2
�

�T1 − T2�
12 + �T3 − T1�
13 + �T2 − T3�
23

123, �10�

where


12 = ��T1 − TU��T2 − TU��n,


13 = ��T1 − TU��T3 − TU��n,


23 = ��T2 − TU��T3 − TU��n,


123 = �− �T1 − TU��T2 − TU��T3 − TU��n. �11�

The transformation beginning curve gives the beginning time tB
iso

when 1% of the new phase fraction is formed. The other curve
gives the transformation end time tE

iso when 99% of the equilib-
rium phase fraction �eq is formed at a constant temperature T

1 − exp�− a · �tB
iso�b� = 0.01

1 − exp�− a · �tE
iso�b� = 0.99�eq. �12�

The transformation parameters a and b are obtained by solving
Eq. �12�

a = −
1

�tE
iso�b ln�1 − 0.99�eq�

b =
1

ln� tS
iso

tE
iso� ln
 ln�1 − 0.01�

ln�1 − 0.99�eq�� , �13�

at a constant temperature T, if the beginning time tB
iso and the end

time tE
iso are known. The variations of these factors with respect to

the temperature are shown in Fig. 2 for C45.
In the continuous cooling case, the transformation begins at the

incubation time tB
inc and it ends after time tE

inc, which are obtained
by Scheil’s sum �14�



0

tS,E
inc

1

�B,E�T�t��
dt = 1, �14�

on discrete basis

	i=1
n �t

�B,E�Ti�
= 1, �15�

for an arbitrary cooling curve T�t�.
The calculations are much easier for martensitic transforma-

tions that do not depend directly on the time but only on the
temperature. The martensite phase fraction is calculated according
to Koistinen-Marburger �15� equation

�M = �A�1 − exp�− kM�TMs − T��� , �16�

where �A is the austenite phase fraction at the beginning of mar-
tensitic transformation, kM is a stress-dependent transformation

constant, and TMs is the temperature at which the martensitic
transformation starts. The effects of the stress state on the trans-
formation kinetics are discussed by Denis et al. �16�.

2.3 Stress/Strain Field. An isotropic thermoplastic material
behavior with a temperature and phase fraction dependent consti-
tutive relation is employed. The basic assumptions are as follows:

A1: total deformations are small,

E = 1/2�grad�u� + gradT�u�� and E = ET,� + Ep + Etrip + Ee;

�17�
A2: the material is isotropic,

T = C�Ee� = 
 tr�E − ET,��I + 2��E� − Etrip − Ep�; �18�
A3: plastic deformations are incompressible,

tr�Ep� = 0, E�p = Ep; �19�
A4: the material behavior is rate independent,
A5: the flow condition is of von Mises type,

��T�,�p,T,�i� = �T�� − �2/3�y��p,T,�i� �20�
A6: an associative plastic model is used,

Ėp = �
�


�T
= �

T�

�T��
= �N�;and �21�

A7: linear isotropic hardening behavior is assumed,

Fig. 2 Avrami constant of transformation kinetics
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�y = �yvmix
HM + Hmix

HM�p, �̇p = �2/3� . �22�

The prime “N�” over a tensor represents its deviator, “tr�E�” is the
trace operator.

Material equations

loading condition: ��̇��p=const.
��

�T�
· T�˙ +

��

�T
Ṫ + 	i=1

n ��

��i
�̇i

= ��0 loading

=0 neutral

�0 unloading

�23�

consistency condition: �̇ =
��

�T�
· Ṫ� +

��

��p �̇p +
��

�T
Ṫ + 	i=1

n ��

��i
�̇i

= 0. �24�
For a plastic loading increment, the unknown plastic multiplier

� can be obtained from the consistency condition Eq. �24�. The
first term in the consistency condition is computed from the elastic
law Eq. �18�

�


�T�
· Ṫ� = N� · �2�̇�E − Etrip − Ep� + 2��Ė − Ėtrip − Ėp�� .

�25�
Equations �20�–�22� are used to calculate the last three terms in
the consistency condition. Finally, the unknown plastic multiplier
is

� =

2�̇N� · �E − Etrip� + 2�N� · �Ė − Ėtrip� −�2

3
� ��y

�T
Ṫ + 	i=1

n ��y

��i
�̇i�

2� + 2
3H

. �26�

A linear relation between temperature and thermal strain is used in
general. However, this method contains a linearization �17� and
sometimes requires a conversion of the reference temperatures.
An alternative method is based on the temperature dependence of
the density �18�. The thermal and transformation induced strains
are combined in an isotropic tensor

ET,� = ��3 �R

�
− 1�I , �27�

where �R denotes the reference density and � is the mixture den-
sity. For an n-phase mixture, the thermal and transformation in-
duced strain rate becomes

ĖT,� =
dET,�

d�
� ��

�T
Ṫ + 	i=1

n ��

��i
�̇i� . �28�

The transformation induced plasticity �TRIP� is an additional ir-
reversible deformation, which occurs during the phase transition.
The TRIP flow occurs in the direction of the stress deviator T�,
even if the global stress does not exceed the yield limit of a single
phase. The flow rate is proportional to the phase transition rate
and the stress deviator

Ėtrip = −
3

2
� ln����̇T�. �29�

This equation characterizes the macroscopic material behavior,
which is determined by the micromechanical processes. More-
over, the proportionality factor depends on the fraction of the
transformed phase and Greenwood Johnson coefficient � �19�,
which must be determined experimentally. The equation for the
factor is given as

�i =
5��A − �i�

6�A�yA
, �30�

where the density ratio is a measure for the volume ratio of the
converting phases �e.g. austenite, pearlite� and �yA the yield limit
of the softer phase �mostly austenite� at transformation
temperature.

The relationship between the stress tensor T and the elastic
strain tensor Ee is given by the elastic law Eq. �18�. The tangential
elastoplastic material operator is

Cep = � �T

�Eep�
T,�=const.

= Ce −
2�

1 +
H

3�

N� � N�

= 3
I � I + 2��I − 1
3I � I� −

2�

1 +
H

3�

N� � N�, �31�

where I is fourth order identity tensor and I � I the dyadic product
of second order identity tensors. Quadratic convergence is pro-
vided for plastic deformations with the elastoplastic tangential op-
erator.

2.4 Description of the Distortion. The distortion of long
steel profiles is intended to be simulated by the model described
above. The distortion cannot be adequately described by the de-
flection of the profile as it depends on the length of the profile.
Hence, the distortion is defined in terms of curvature of profile.
The deflection � from the neutral axis is approximated by a pa-
rabola

� = p · z2. �32�

The curvature related factor p serves as a measure for the distor-
tion.

2.5 Solution Algorithm. A time integration scheme that in-
volves equilibrium iterations at each time step is applied to solve
the coupled field problem described above. In an iteration step,
first the temperature, phase transitions and stress field are calcu-
lated, respectively. The phase transitions are calculated by using
the current iteration temperature and the temperature from the
previous time step. When the values of temperature, microstruc-
ture fractions and stresses have converged, the iteration for the
next time step is started.

3 Experimental Verification of Mathematical Model
The simulation results were compared with the experimental

measurements in order to validate the mathematical model intro-
duced above. As no proper measurements for profiles are known,
we used the available experimental results for notched shafts and
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cutting disks as shown in Fig. 3. The samples were homoge-
neously heated in a roller-hearth kiln up to a temperature value of
850°C in a nitrogen atmosphere. After the heating, the samples
fell into a catching cage, in which they were precisely positioned
and quenched in a nozzle field. The nozzle spacing, flow rate, and
distance from the sample could be adjusted. The heat transfer
coefficient could be controlled in this way and was well known
from other specific measurements. Samples were available in two
geometries, i.e., shafts; 18 mm in diameter with 60 mm of length,
and 36 mm in diameter with 120 mm of length, and disks; 90 mm
and 120 mm of outer diameter. As a material, 100Cr6 was used
because the material properties are well known and available with
high accuracy as given in Table 1. Further details of the experi-
ments can be found in the literature �20�.

The temperatures were measured with thermocouples of type K
and class 1, which have an accuracy of 1.5°C for 0–375°C and
0.004T °C for 375–1000°C. The thermocouples were placed in
the drilled holes as shown in Fig. 4. The regions 2 and 3 have the
highest and lowest temperatures, respectively. As an example, the
measured temperatures at these two points are compared to the
calculated ones for the bigger shaft. As expected, the curves co-
incide for an appropriate heat transfer coefficient.

The calculated stresses are compared to the measured stresses
for the bigger shaft in Fig. 5. The measurements are performed at
five sampling points in longitudinal direction with a computer-
controlled diffractometer. The simulation result matches well the
measurements as it can be seen in Fig. 5.

Table 2 presents the calculated and measured microstructure
fractions for the shafts and disks. The probes were taken from the
positions at the surface given in the upper-left corner of Table 2.
The microstructure fractions were measured by the point analysis
method �21� with an accuracy of 1% fraction. The calculated mar-
tensite fraction values were higher for the shafts but smaller for
the disks than those measured. The calculated bainite fraction was
slightly lower than the measured values for the small shaft, and
for all other cases it was slightly higher. Calculated and measured
pearlite fractions occurred only for the shafts and these values are
similar. The discrepancies with the experimental measurements
are less than 10% mostly and they are acceptable for such simu-
lations. Such a behavior might be due to small fluctuations of
chemical compositions which are listed in Table 3.

The distortion of the cutting disk was measured by the change
in the radius of a hole with accuracy 1.3 �m. Figure 6 shows the
radial displacement of the hole in the angular position. As can be
seen from Fig. 6, the simulation results fit the measured distortion
of the disks.

The overall performance of the model is quite satisfactory, and
the finite element simulation results are in agreement with the
measurements. The mesh convergence tests have been performed
and it is observed that further refinements of the mesh have neg-

Fig. 3 The shaft „�=450 W/m2/K… and the disk „�
=200 W/m2/K… with the quenching nozzle field

Table 1 Material properties for 100Cr6

Journal of Applied Mechanics MAY 2007, Vol. 74 / 431

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



ligibly small influence on the simulation results. Hence, this
model can be applied to other samples such as long profiles.

4 Profile Cooling Simulations
The model is now used to investigate the distortion behavior of

the profiles. T and L profile simulations have been carried out to
investigate their cooling distortion behaviors. The geometrical di-
mensions, finite element �FE� mesh, and the observation points
are shown in Fig. 7. The profile is made of C45 steel, which is a
typical material for such profiles. The temperature-dependent flow
curves can be found in the literature �22�, and the temperature-
dependent thermophysical material properties are given in Table
4. This steel, unlike high-strength steels, completely loses its elas-
tic characteristics above a temperature of about 600°C. In order to
demonstrate the plasticity effects, the cooling conditions have to
be much more intensive as compared to the natural cooling con-
ditions. The heat transfer coefficient and the emissivity are taken
as 1000 W/m2/K and 0.7, respectively. Radiation constitutes ap-
proximately 10% of the heat transfer. The cooling process starts at
600°C. Therefore, there is no phase transformation effect.

The residual axial stress in the cross section after the cooling is
shown in Fig. 8. The outer region is subjected to compressive
stresses and the core is subjected to tensile ones. The evolution of
the plastic zones can be observed in Fig. 9 during different stages
of cooling. At the beginning, the external region shortens faster
due to the temperature difference between the core and surface,

and the external regions yields under tension. However, it returns
later to the elastic range, while the compressive stress in the core
region reaches the yield limit. Finally, the exterior region comes
under compression, while the compressive stress in the core be-
comes tensile stress.

In practice, 75–95% of the plastic work is converted into heat.
The unconverted part of the dissipated energy is stored in the form
of micromechanical stresses in crystal structure. The dissipation of
the mechanical energy significantly affects the temperature field
only in special cases such as metal forming. The dissipation pro-
cess and the corresponding heat generation are shown as functions
of the cooling time in Fig. 10 for the points described in Fig. 7. It
is obvious that the heat generation effect is negligibly small as
compared to the convection and radiation in the case of quench-
ing.

The second simulation is the cooling of a standard L profile
with the dimensions of L120�12 according to DIN 1028. The
profile cross section is simply symmetric and prone to distortions.
The geometrical dimensions, FE mesh, and observation points are
shown in Fig. 11. The behavior of the state variables at the obser-
vation points during cooling is demonstrated in Fig. 12. The left
column represents plots for the hypoeutectic steel C45, the mate-
rial properties of which are listed in Table 4, and the right ones for
the eutectic steel C80, listed in Table 5. The heat transfer coeffi-
cient is �0=10 W/m2/K, and the value of emissivity is taken as
0.7 for all surfaces. It is obvious that the temperature at the outer

Fig. 4 Calculated and measured temperature profiles for the bigger shaft
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Table 2 Microstructure phase fractions from measurements „m… and simula-
tions „s…

Table 3 Chemical compositions of shaft steel, disk steel, and steel in the model

Fig. 5 Calculated and measured internal stresses for the bigger shaft
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observation points 1 and 4 drops at the fastest rate, and for the
interior point 3 at the slowest rate. Accordingly, the regions lying
on the outer parts experience the phase transition earlier than the
core. In the third row of diagrams the axial stress is shown. This
stress usually changes its direction during the phase transition and
achieves a maximum value at the end of the phase transition. The
TRIP strains in axial direction are shown in the fourth row. It is
noticed that the external regions are subjected to the largest plastic
deformations. The distortion of the profiles which is defined in Eq.
�32� is shown in the fifth row. The distortion changes direction
during cooling, and finally a positive plastic distortion remains. It
is also noticed that the deformations are higher for C80 than that
of C45.

Figure 13 shows the residual axial stress in the L profile. The
bold line is the border between the tension region and the com-
pression region. The thermal contraction in the core results in a
high tensile stress in this region. The distortion is obviously de-
termined by the cooling of the mass-lumped region. In order to

reduce the distortion, the cooling rate around the point 2 should be
increased as schematically described in Fig. 14. Such a heat trans-
fer process can be achieved if the point 1 is cooled with an air
nozzle from the outside. The distortions for different heat transfer
coefficients are shown in Fig. 15. The maximum heat transfer
should occur at the vertex in order to reduce the distortion. In
some extreme cases, even a distortion in the opposite direction
can be obtained �18�. The same effect can be achieved by placing
the air nozzle towards point 2 from inside.

5 Conclusions
The experiments and examples demonstrate that:

Table 4 Material properties for C45

Fig. 6 Measured and calculated distortion profiles for the big-
ger disk

Fig. 7 Finite-element mesh and geometric dimension in „mm…

of T profile
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• The Avrami equation together with Scheil’s additivity
rule estimates well the phase evaluations.

• The cooling of steel workpieces can be effectively con-
trolled in a nozzle field.

• The temperature field can be accurately simulated when
an appropriate heat transfer coefficient is used.

• The plastic deformation always starts from the surface
and penetrates to the core henceforth.

• The heat generation by plastic dissipation is negligible as
compared to the latent heat of the phase transition.

• In general the core remains under tensile and the shell
remains under compressive residual stresses at the end.

Fig. 8 The residual axial stress in the T profile after cooling

Fig. 9 Evolution of plastic zones during cooling of T profile

Fig. 10 Dissipation „bottom… and corresponding internal heat
generation „top…

Fig. 11 Finite-element mesh and geometric dimension in „mm…

of L profile

Fig. 12 Behavior of state variables during the cooling of L
profiles
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• The distortion changes direction and reaches its maxi-
mum value during the phase transition.

• The stresses and strains also reach their maximum value
during the phase transition.

• The distortion is mainly due to TRIP strains, which are
related to phase transition phenomena.

• The profiles with smaller section sizes have more distor-
tion than those with bigger section sizes, which has been
already ascertained in practice.

• The results support the idea that distortion can be re-
duced by increasing the cooling at mass lumped regions.

Nomenclature
C � capacitance matrix for heat transfer

C ,Cep � fourth order elastic and elastoplastic constitu-
tive tensors, respectively

E � linearized strain tensor
F � force vector for heat transfer

He � element interpolation functions
I ,I � fourth and second order identity tensor,

respectively
K � conductivity matrix for heat transfer �Eq. �6��

stiffness matrix for displacement solution

Table 5 Material properties for C80

Fig. 13 Residual axial stress in the L profile after the cooling

Fig. 14 Schematic representation of cooling strategy
Fig. 15 The distortion of L profiles for different cooling condi-
tions „according to Eq. „32……
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N � flow surface unit normal
nS � surface unit normal
qS � heat flux vector
u � displacement vector
T � nodal temperature vector �Eq. �6�� Cauchy

stress tensor
a ,b � Avrami parameters

Ae � cross section area of an element
cp � specific heat capacity

d0 ,d1 ,d2 TU,
and TL � Hougardy parameters

e � emissivity
H � hardening parameter

Hi
e � element interpolation function for ith node
h � element thickness in the third dimension

kM � martensitic transformation constant
k � heat conductivity

Li � latent heat of ith phase conversion
n � exponent in an expression, Hougardy param-

eter �Eqs. �9� and �11�� number of phases in
mixture �Eqs. �3� and �8��

N � exponent in the expression to define mixture
rule �Eq. �7�� number of nodes per element
�Eq. �4��

p � distortion defined by curvature
qv � heat generation rate in the body

r ,s � local �natural� coordinates
Se � convective boundary line for a boundary finite

element
t � time

Ti
e � temperature at ith node
T � temperature

T� � ambient temperature
TMs � martensitic transformation start temperature

x ,y ,z � global cartesian coordinates
Zmix,Zi � material property estimate for mixture and its

value for ith phase, respectively
� � convection coefficient

�� � equivalent convection coefficient �including
radiation�

� � profile deflection
�eff

p � equivalent plastic strain
� � strain

 � dummy variable in Hougary parameters

calculation
� � flow condition
� � radiation view factor

 � bulk modulus
� � Greenwood Johnson factor
� � plastic multiplier
� � shear modulus
� � mass density
� � Stefan-Boltzmann constant �Eq. �3�� stress

�y � yield stress
�eff � effective stress

�i � phase fraction of ith phase
� � TTT-curve defining function
� � fraction of mechanical energy converted to

heat energy
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Elastic Analysis for Defects in an
Orthotropic Kirchhoff Plate
Defects such as inhomogeneities, inclusions with eigenstrains, and dislocations in an
infinite orthotropic Kirchhoff plate are analyzed. These results could be applied to thin
plate problems regardless of whether the plate is homogeneous or inhomogeneous in the
direction of a thickness. An orthotropic laminated plate with a symmetric plane normal to
the direction of the thickness is included as a special case. The eigenstrain is assumed to
vary throughout the direction of the thickness. Thus, a bending of the plate due to the
eigenstrain is considered. Employing Green’s functions, which are expressed in explicit
compact forms in a Cartesian coordinates system and were recently obtained by using a
Stroh-type formalism, the elastic fields for defects are obtained by way of Eshelby’s
inclusion method. The general solutions for the extension and bending deformations due
to the mid-plane eigenstrain and eigencurvature are expressed in quasi-Newtonian po-
tentials and their derivatives, which appear in a closed form for the elliptic inclusion. For
the bending problem of an inclusion with uniform eigencurvature, the curvature inside
the inclusion becomes uniform, corresponding to that from Eshelby’s analysis of an
isotropic solid. Edge dislocation and elliptic inclusions with polynomial eigenstrains are
also discussed in this work. �DOI: 10.1115/1.2338051�

1 Introduction
Since the pioneering works of Eshelby �1–3� on the elastic

analysis of inclusions and inhomogeneities, extensive research on
this subject has been reported, including the study of inclusions
and inhomogeneities with nonuniform eigenstrains, cracks, dislo-
cations, and effective material properties. Following Mura �4�, a
homogeneous inclusion is defined as a bounded sub-region con-
tained in a material with identical material properties but with a
finite stress-free transformation strain �or eigenstrain� within the
sub-region. An inhomogeneous inclusion is defined as a bounded
sub-region with material properties different from those of the
surrounding region or matrix and with an eigenstrain. Various ex-
amples of naturally occurring eigenstrains are those due to a ther-
mal expansion, lattice parameter mismatch, phase transformation,
inelastic deformation, electromechanical strains, compositional
differences, etc.

A number of two-dimensional inclusion problems in an infinite
solid have been solved, mostly by the Green’s function method
and a complex-variables approach. For example, using Eshelby’s
inclusion method, Jaswon and Bhargava �5� obtained explicit so-
lutions for elliptic inclusions under conditions of plane strain and
generalized plane stress. Their methods were extended, indepen-
dently, by Willis �6� and Bhargava and Radhakrishna �7�, to cubic
and orthotropic media, respectively. Hwu and Ting �8� solved a
two-dimensional elliptic inhomogeneity problem in an infinite an-
isotropic solid by using the Stroh formalism. Recently, Beom �9�
and Beom et al. �10,11� successfully expanded Eshelby’s method-
ology to the problem of a plate containing an inclusion or inho-
mogeneity with a uniform eigenstrain. The results have been ap-
plied by Duong and Yu to the analysis of thermal stresses due to a
low uniform operating temperature in a one-sided composite
bonded repair �12,13�. The works done by Beom �9� and Beom
et al. �10,11� extended to an inclusion with polynomial eigen-

strains by Yang et al. �14�. However, these works are concerned
with isotropic plates. No explicit solutions for the anisotropic
plates have yet been reported in the literature.

Considered in the present study is an infinite orthotropic Kirch-
hoff plate containing an elliptic cylindrical inclusion with a uni-
form eigenstrain. The eigenstrain is assumed to vary throughout
the direction of a thickness. Thus, the bending of the plate due to
an eigenstrain has to be considered. According to the Kirchhoff
plate theory, thickness-direction-varying eigenstrain generates a
mid-plane eigenstrain and an eigencurvature, which are, respec-
tively, related to the extension and bending problems of an ortho-
tropic Kirchhoff plate. By way of the Green’s function method,
integral-type general solutions of the in-plane and out-of-plane
displacements are expressed in terms of the mid-plane eigenstrain
and eigencurvature, respectively. Real-form Green’s functions ex-
plicitly expressed in a Cartesian coordinates system, recently ob-
tained by using a Stroh-like formalism, are employed here �15�.
The elastic fields are obtained by evaluating the integrals. An
infinite orthotropic plate containing an elliptic cylindrical inhomo-
geneity with a prescribed eigenstrain is also considered. The elas-
tic fields caused by the inhomogeneity are determined by the
equivalent eigenstrain method, which is an extension of the
equivalent inclusion method proposed by Eshelby �1� for an ellip-
soidal inhomogeneity problem. An edge dislocation and an inclu-
sion with polynomial eigenstrains are also discussed. The inclu-
sion problem with polynomial eigenstrains proposed
by Sendeckyj �16� is extended to the problem of a bending
deformation of a plate due to an inclusion with polynomial
eigencurvatures.

2 Formulation
Among the numerous two-dimensional models for studying de-

formations of a thin plate, the most classic and celebrated model is
the Kirchhoff plate model, in which a transverse normal plane
remains normal to the mid-plane of the plate during a deforma-
tion. Consider a deformation of an infinite orthotropic Kirchhoff
plate containing an elliptic subregion � in which a uniform eigen-
strain �ij

* is prescribed, as shown in Fig. 1. The traction vanishes at
infinity. The major and minor semi-axes of the ellipse are a1 and
a2, respectively. The eigenstrain �ij

* is assumed to vary throughout
the direction of the thickness. Thus, the bending deformation of
the plate due to the eigenstrain must be considered. The plate is
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composed of an orthotropic, linearly elastic material that can be
inhomogeneous in the thickness direction. Accordingly, the plate
includes a special case of an orthotropic laminated plate with a
symmetric plane normal to the direction of the thickness.

According to the Kirchhoff plate theory, the displacements at
any point of a plate are written as �17�

ui = ui
0 − x3w,i�x1 x2�, �i = 1,2� �1a�

u3 = w�x1,x2� �1b�

where ui �i=1,2� and u3 are the in-plane and out-of-plane dis-
placements, respectively, ui

0 is the in-plane displacement on the
mid-plane, and the subscript comma denotes a partial derivative
with respect to the in-plane Cartesian coordinates, x1 and x2. Total
strain �ij is regarded as the sum of an elastic strain eij and an
eigenstrain �ij

*

�ij = eij + �ij
* �i, j = 1,2� �2�

and the total strain must be compatible

�ij =
�ui,j + uj,i�

2
�i, j = 1,2� �3�

The elastic strain eij is related to stress �ij by Hooke’s law

�ij = C̃ijklekl = C̃ijkl��kl
0 + x3�kl − �kl

* � �i, j,k,l = 1,2� �4�

where C̃ijkl is the reduced elasticity tensor related to the elasticity
tensor Cijkl as

C̃ijkl = Cijkl −
Cij33C33kl

C3333
�5�

and �kl
0 and �kl are the mid-plane strain and curvature defined as

�kl
0 = �uk,l

0 +ul,k
0 � /2 and �kl=−w,kl, respectively. In this paper, the

repetition of an index in a term denotes a summation with respect
to that index over its range of 1 to 2 for a lowercase Roman letter
unless indicated otherwise, and boldfaced symbols represent vec-
tors or matrices. By integrating Eq. �4� through the plate thickness
and making use of the attribute that the resultant stress Nij and
bending moment Mij are, respectively, defined as

Nij =�
x3

�ij dx3 �6a�

Mij =�
x3

�ijx3 dx3 �6b�

the constitutive relations for the orthotropic plate containing an
inclusion with the mid-plane eigenstrain �ij

0* and the eigencurva-
ture �ij

* can be written as

Nij = Aijkl��kl
0 − �kl

0*� �i, j,k,l = 1,2� �7a�

Mij = Dijkl��kl − �kl
* � �i, j,k,l = 1,2� �7b�

where Aijkl and Dijkl are the extensional and bending stiffness
tensors, respectively, given by

Aijkl =�
x3

C̃ijkl dx3 �8a�

Dijkl =�
x3

C̃ijklx3
2 dx3 �8b�

and the mid-plane eigenstrain and the eigencurvature are, respec-
tively, related to the prescribed eigenstrain �ij

* as

Aijkl�kl
0* =�

x3

C̃ijkl�kl
* dx3 �9a�

Dijkl�kl
* =�

x3

C̃ijkl�kl
* x3 dx3 �9b�

It is briefly noted here how to determine the mid-plane eigenstrain
�ij

0* and eigencurvature �ij
* from the prescribed eigenstrain �ij

* for
an orthotropic laminated plate with a symmetric plane normal to
the x3-axis, a laminated plate layered by isotropic and transversely
isotropic materials with a symmetric plane along the x3-axis, and
for an orthotropic plate. Equations �9a� and �9b� provide the ex-
pressions for a system of simultaneous equations with unknown
mid-plane eigenstrains and eigencurvatures for the extension and
bending problems, respectively. However, if the inclusion is also
an orthotropic solid with the same crystalline direction to the ma-
trix, then the tensile and shear components will be decoupled.
Hence, the tensile components of the eigenstrain only generate the
tensile ones of the mid-plane eigenstrain and eigencurvature, and
the shear component of the eigenstrain also generates its counter-
part of the mid-plane eigenstrain and eigencurvature. The tensile
components of the mid-plane eigenstrain �̄0*= ��11

0* ,�22
0*� and

eigencurvature �̄*= ��11
* ,�22

* � can be, respectively, expressed in a
compact matrix form from Eqs. �9a� and �9b� as

�̄0* =�
x3

Ā−1C̄�̄*dx3 �10a�

�̄* =�
x3

D̄−1C̄�̄*x3dx3 �10b�

where the components of the 2�2 stiffness matrices, Ā, D̄, and C̄
are, respectively,

Ā = �A11 A12

A12 A22
	 D̄ = �D11 D12

D12 C22
	 C̄ = �C̃11 C̃12

C̃12 C̃22

	
�11�

In this paper, the transformations between the extension and bend-
ing stiffness, Aijkl and Dijkl, and Amn and Dmn, respectively, are
accomplished by replacing the subscripts ij �or kl� by m �or n�
using the following role:

ij �or kl�=11,22,12 �or 21�↔m�or n�=1,2 ,6.
The shear components of the mid-plane eigenstrain and the

eigencurvature can be, respectively, expressed as

�12
0* =

1

A66
�

x3

C̃66�12
* dx3 �12a�

�12
* =

1

D66
�

x3

C̃66�12
* x3 dx3 �12b�

For a laminated plate layered by isotropic or transversely isotropic
materials with a symmetric plane normal to the x3-axis, the mid-
plane eigenstrain and the eigencurvature are, respectively, reduced
to

Fig. 1 Infinite plate containing an elliptic cylindrical inclusion
with principal half axes a1 and a2, in which uniform eigenstrain
is prescribed
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�ij
0* =

1

A11 − A12
�

x3

�A11C12 − A12C11

A11 + A12
�kk

* �ij + �C11 − C12��ij
*	dx3

�13a�

�ij
* =

1

D11 − D12
�

x3

�D11C12 − D12C11

D11 + D12
�kk

* �ij + �C11 − C12��ij
*	x3 dx3

�13b�

For an orthotropic plate, the mid-plane eigenstrain �ij
0* and eigen-

curvature �ij
* in Eqs. �9a� and �9b�, respectively, reduce

�ij
0* =

1

h�
x3

�ij
* dx3 �14a�

�ij
* =

12

h3�
x3

�ij
* x3 dx3 �14b�

Employing Eshelby’s inclusion method to the plate problem,
integral type solutions for in-plane and out-of-plane displacements
can be, respectively, expressed as �14�

ui
0�x1,x2� = −�

�

AjlmnGij,l�mn
0* �x1�,x2��dA �15a�

w�x1,x2� = −�
�

DjlmnG33,jl�mn
* �x1�,x2��dA �15b�

where the Green’s functions Gij�x−x�� and G33�x−x�� are the
displacement components ui

0 and u3 at point x when unit concen-
trated forces in the xi-direction and x3-direction, respectively, are
applied at point x� in the infinite orthotropic Kirchhoff plate, of
which the components are given in Appendix A.

3 Homogeneous Inclusion

3.1 Deformation of the Plate. For an orthotropic Kirchhoff
plate containing an inclusion with mid-plane eigenstrain and
eigencurvature, the in-plane and out-of-plane displacements due
to a homogeneous inclusion in Eqs. �15a� and �15b� are, respec-
tively, reduced to

ui
0 =�

�

f ijk� jk
0* d��x1� x2�� �16a�

w =�
�

hmn�mn
* d��x1� x2�� �16b�

where the functions f ijk and hmn are linearly proportional to the
first and the second derivatives of the Green’s functions for the
extension and bending problems, respectively, as

f ijk = − AmnjkGim,n �17a�

hmn = − DjlmnG33,jl �17b�

Substituting Eqs. �A1a�–�A1c� into Eq. �17a�, the components of
the tensor f ijk for the extension problem can be expressed as

f111 = − 

n=1

2

�A12 + A66��pn
A�2�n�n	n,1

A �18a�

f112 = − 

n=1

2

�A12 + A66��n�n	n,2
A �18b�

f122 = 

n=1

2

�n�n	n,1
A �18c�

f211 = − 

n=1

2

�n�n
n	n,2
A �18d�

f222 = 

n=1

2 � 1

pn
A�2

�n�n
n	n,2
A �18e�

f212 = 

n=1

2

�n�n
n	n,1
A �18f�

where the constants pn
A, �n, 
n and the function 	n

A are given in
Eqs. �A2�, �A3a�, �A3b�, and �A4a� in Appendix A, respectively,
and the constant �n is

�n = A66�A11 + �pn
A�2A12� �19�

The tensor f ijk is symmetric in jk, that is f ijk= f ikj. Here the rela-
tions �n,1

A =−�1/ pn
A�	n,2

A and �n,2
A = pn

A	n,1
A , where the function �n

A is
defined in �A4b�, are used. Substituting Eqs. �A7a� and �A7b� into
Eq. �17b� for a bending problem, the following is derived

h11 = − 

n=1

2

�n
n	n
D �20a�

h22 = 

n=1

2 �4D66 −
�n

�pn
D�2�
n	n

D �20b�

h12 = 

n=1

2

2D66
npn
D�n

D �20c�

where the constants 	n
D, 
n are given in Eqs. �A8� and �A9�,

respectively, and the constant �n is

�n = �D11 − D12�pn
D�2� �21�

The tensor hij is symmetric in ij. By introducing integrals �n
* and

�n
* defined by

�n
* =�

�

	n
* d� �22a�

�n
* =�

�

�n
* d� �22b�

the in-plane and out-of-plane displacements of Eqs. �16a� and
�16b� could be explicitly expressed by these integrals and their
derivatives. In this paper, the superscript * stands for the super-
script A or D, except for an eigenstrain and an inhomogeneity,
designating the constants or functions of the extension and bend-
ing problems, respectively. Here, it should be noted that the partial
derivatives �n,1

* and �n,2
* are equal to the derivatives −�1/ pn

*��n,2
*

and pn
*�n,1

* , respectively.

3.2 Mid-Plane Strain, Curvature, Resultant Stress and
Bending Moment. Substituting Eqs. �16a� and �16b� into the re-
lations, �kl

0 = �uk,l
0 +ul,k

0 � /2 and �kl=−w,kl, respectively, the mid-
plane strain and the curvature outside an inclusion with a uniform
mid-plane eigenstrain and eigencurvature can be, respectively, ex-
pressed as

�ij
0 = Xijkl�kl

0* �x1 x2� � � �23a�
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�ij = Yijkl�kl
* �x1 x2� � � �23b�

where the tensors Xijkl and Yijkl are

Xijkl =
1

2
�Fikl,j + Fjkl,i� �24a�

Yijkl = − Hkl,ij �24b�

where the functions Fijk and Hij are

Fijk =�
�

f ijk d� �x1 x2� � � �25a�

Hij =�
�

hij d� �x1 x2� � � �25b�

The mid-plane strain and the curvature inside the inclusion are

�ij
0 = Sijkl�kl

0* �26a�

�ij = Tijkl�kl
* �26b�

where the tensors Sijkl and Tijkl have the same expression as Xijkl
and Yijkl, respectively, except that the integrals in Eqs. �25a� and
�25b� are evaluated for points inside the inclusion �. The tensors
Xijkl, Yijkl, Sijkl and Tijkl are symmetric with respect to an inter-
change of i and j or k and l, i.e., Xijkl=Xjikl=Xijlk, Yijkl=Y jikl
=Yijlk, etc. The solutions of Eqs. �23a�, �23b�, �26a�, and �26b� are
functions of the quasi-Newtonian potentials �n

* for the inclusion
�

�n
* =�

�

	n
* d� �27�

For an elliptic inclusion, the quasi-Newtonian potentials �n
* can

be obtained in a closed form as will be shown in the following
section. Substituting the above mid-plane eigenstrain �ij

0 and
eigencurvature �ij into Eqs. �7a� and �7b� with a prescribed mid-
plane eigenstrain and eigencurvature, respectively, the resultant
stress and moment could be obtained. The expressions for the
elastic energy in the matrix and in the inclusion and the interaction
energy of the elastic field with another field are the same as those
given by Eshelby �1� for an isotropic inclusion.

3.3 Elliptic Inclusion With Uniform Mid-Plane Eigen-
strain and Eigencurvature. Considered here is an elliptic cylin-
drical inclusion � described by

x1�
2

a1
2 +

x2�
2

a2
2 = 1 �28�

where the point �0, 0� is its center. The mid-plane eigenstrain and
eigencurvature are prescribed inside the inclusion, as shown in
Fig. 2. The following relationship:

�n =�
�

	n d��x1�,x2�� =�
�*

1

pn
*	n d�*�x1�,pn

*x2�� �29�

where the constants, pn
* are pn

A or pn
D, and �n indicates the New-

tonian potential at the point �x1 , pn
*x2� due to an elliptic cylinder

with a mass density 1/ pn
*, semi-axes a1 and pn

*a2, of which the
explicit expressions are shown in Appendix B. The logarithmic
Newtonian potential �n and those derivatives are used for evalu-
ating the mid-plane strain, curvature, corresponding resultant
stress, and the bending moment. For a mathematical convenience,
mechanical fields inside the elliptic inclusion with a uniform mid-
plane eigenstrain and eigencurvature are considered here. Substi-
tuting Eqs. �18a�–�18f� into Eq. �25a�, and then substituting these
results into Eq. �24a�, the nonzero components of the tensor Sijkl
can be given as

S1111 = − 

n=1

2

�A12 + A66��pn
A�2�n�n�n,11

A �30a�

S1122 = 

n=1

2

�n�n�n,11
A �30b�

S2211 = − 

n=1

2

�n�n
n�n,22
A �30c�

S2222 = 

n=1

2 � 1

pn
A�2

�n�n
n�n,22
A �30d�

S1212 = − 

n=1

2
�A12 + A66�

2
�n�n�n,22

A + 

n=1

2
1

2
�n�n
n�n,11

A

�30e�

Here it should be noted that the integrals in Eqs. �25a� and �25b�
are evaluated for points inside the inclusion �, as mentioned
above, and �n,12

* =0 for points inside the elliptic inclusion. Simi-
larly, substituting Eqs. �20a�–�20c� into �25b�, and then substitut-
ing these results into Eq. �24b�, the nonzero components of the
tensor Tijkl can be given as

T1111 = 

n=1

2

�n
n�n,11
D �31a�

T1122 = − 

n=1

2 �4D66 −
�n

�pn
D�2�
n�n,11

D �31b�

T2211 = 

n=1

2

�n
n�n,22
D �31c�

T2222 = − 

n=1

2 �4D66 −
�n

�pn
D�2�
n�n,22

D �31d�

T1212 = 

n=1

2

2D66
n�n,22
D �31e�

Since the derivatives of the potential, �n,11
* and �n,22

* , are con-
stants inside the inclusion and, therefore, the Eshelby tensors Sijkl
and Tijkl are also constants inside that region, the strain and cur-
vature inside the elliptic inclusion are uniform, corresponding to
those for an isotropic solid, first investigated by Eshelby �1�.

Substituting Eq. �26a� into Eq. �7a�, the components of the
resultant stress inside the inclusion can be expressed as

Fig. 2 Infinite plate containing an elliptic cylindrical inclusion
with principal half axes a1 and a2, in which uniform mid-plane
eigenstrain and eigencurvature are prescribed
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N11 = �A11�S1111 − 1� + A12S2211��11
0* + �A11S1122 + A12�S2222 − 1���22

0*

�32a�

N22 = �A12�S1111 − 1� + A22S2211��11
0* + �A12S1122 + A22�S2222 − 1���22

0*

�32b�

N12 = A66�S1212 − 1��12
0* �32c�

Similarly, substituting Eq. �26b� into Eq. �7b�, the components of
the bending moment inside the inclusion can be expressed as

M11 = �D11�T1111 − 1� + D12T2211��11
*

+ �D11T1122 + D12�T2222 − 1���22
* �33a�

M22 = �D12�T1111 − 1� + D22T2211��11
*

+ �D12T1122 + D22�T2222 − 1���22
* �33b�

M12 = D66�T1212 − 1��12
* �33c�

For the region outside the inclusion, those fields might be evalu-
ated without any difficulty via the quasi-Newtonian potentials and
their derivatives for that region, as given in Appendix B.

4 Inhomogeneous Inclusion
Consider an infinite orthotropic Kirchhoff plate with stiffness

Aijkl and Dijkl containing an elliptic inhomogeneity with stiffness
Aijkl

* and Dijkl
* . A uniform mid-plane eigenstrain and eigencurva-

ture are prescribed in the elliptic inhomogeneity. The major and
minor semi-axes of the ellipse are a1 and a2, respectively. The
elastic fields due to the inhomogeneity can be determined by the
equivalent inclusion method proposed for an ellipsoidal inhomo-
geneity problem by Eshelby �1�. The resultant stress and bending
moment due to the presence of an inhomogeneity with a uniform
mid-plane eigenstrain �kl

0* and eigencurvature �kl
* can be simulated

by the resultant stress and bending moment caused by a homoge-
neous inclusion when the eigenstrain and the eigencurvature are
chosen properly, as illustrated in Fig. 3. The constitutive relation
for the inhomogeneity problem is written as

Nij = Aijkl
* ��kl

0 − �kl
0*� �34a�

Mij = Dijkl
* ��kl − �kl

* � for x in � �34b�

Nij = Aijkl�kl
0 �34c�

Mij = Dijkl�kl for x out of � �34d�

By introducing the eigenstrain �kl
0** and the eigencurvature �kl

** in
order to simulate the inhomogeneity problem in a manner analo-
gous to the equivalent inclusion method in a three-dimensional
elasticity, the constitutive relation for the homogeneous problem
is written as

Nij = Aijkl��kl
0 − �kl

0**� �35a�

Mij = Dijkl��kl − �kl
**� for x in � �35b�

Nij = Aijkl�kl
0 �35c�

Mij = Dijkl�kl for x out of � �35d�
The conditions for the equivalency of the resultant stress and the
bending moment in the two problems of an inhomogeneous and a
homogeneous inclusion above are

Aijkl
* ��kl

0 − �kl
0*� = Aijkl��kl

0 − �kl
0**� �36a�

Dijkl
* ��kl − �kl

* � = Dijkl��kl − �kl
**� for x in � �36b�

Equations �36a� and �36b� determine �kl
0** and �kl

** for a given �kl
0*

and �kl
* , respectively, in such a manner that the equivalency holds.

As mentioned earlier, �kl
0 and �kl in the equations above can be

obtained with known functions of �kl
0** and �kl

** when the eigen-
strain problem in the homogeneous material is solved. For a uni-
form mid-plane eigenstrain and eigencurvature, it is convenient to
define �0**= ��11

0** ,�22
0** ,2�12

0**� and �**= ��11
** ,�22

** ,2�12
**�, while S

and T are simplified by 3�3 matrices, of which the components
are given as

S = 
S1111 S1122 0

S2211 S2222 0

0 0 2S1212
� �37a�

T = 
T1111 T1122 0

T2211 T2222 0

0 0 2T1212
� �37b�

Then, the equivalent eigenstrain and the eigencurvature in Eqs.
�36a� and �36b� could be written in a compact matrix form, re-
spectively, as

�0** = �A*S − AS + A�−1A*�0* �38a�

�** = �D*T − DT + D�−1D*�* �38b�

where A and D are defined by 3�3 matrices, of which the com-
ponents are given in reduced notation as

A = 
A11 A12 0

A21 A22 0

0 0 A66
� �39a�

D = 
D11 D12 0

D21 D22 0

0 0 D66
� �39b�

Similarly, A* and D* are defined as A and D when replacing Aij

and Dij by Aij
* and Dij

* , respectively. Notably, the equivalent eigen-

Fig. 3 Schematic illustration for equivalent inclusion method;
„a… infinite plate containing an inhomogeneous inclusion with
mid-plane eigenstrain and eigencurvature, „b… infinite plate
containing an homogeneous inclusion with equivalent eigen-
strain and eigencurvature, which are properly chosen to give
the same resultant stress and bending moment inside the
inclusion.
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strain and eigencurvature are related to the mid-plane eigenstrain
and eigencurvature in a similar function form, and they are differ-
ent in the stiffness matrix and Eshelby’s tensors.

In general, Eqs. �36a� and �36b� are a system of simultaneous
equations with unknown �ij

0** and �ij
**, where the tensile and shear

components are coupled. However, if the inclusion is also an
orthotropic solid with elastic constants Aijkl

* and Dijkl
* , then the

extension and shear components will be decoupled. As shown in
Eqs. �36a� and �36b� the algebraic equations for calculating the
equivalent eigenstrain and eigencurvature for the extension and
bending problems, respectively, have the same forms. Hence, it
might be sufficient to simply consider one of two problems; se-
lected here is the bending problem. In order to find the tensile
components of the equivalent eigencurvature �ij

**, it is necessary
to solve the following simultaneous equations:

�D11
* T1111 + D12

* T2211 − D11�T1111 − 1� − D12T2211��11
** + �D11

* T1122

+ D12
* T2222 − D11T1122 − D12�T2222 − 1���22

**

= D11
* �11

* + D12
* �22

* �40a�

�D12
* T1111 + D22

* T2211 − D21�T1111 − 1� − D22T2211��11
** + �D12

* T1122

+ D22
* T2222 − D12T1122 − D22�T2222 − 1���22

**

= D12
* �11

* + D22
* �22

* �40b�
And the shear component of the equivalent eigencurvature can be
easily obtained from Eq. �36b� as

�12
** =

D66
* �12

*

2�D66
* − D66�T1212 + D66

�41�

Then, the problem of the inhomogeneous inclusion can be ana-
lyzed with an equivalently simulated problem of a homogeneous
inclusion with the equivalent eigencurvature obtained by Eqs.
�40a�, �40b�, and �41�. That is, the curvature can be obtained by
Eq. �23b� with �ij

** replacing �ij
* . That result is then substituted

into Eq. �7b� to obtain the bending moment, in which the curva-
tures �ij

* are also replaced by the equivalent curvature �ij
**.

5 Some Examples and Discussion
The solutions of this work could be applied to a thin orthotropic

laminated plate with a symmetric plane normal to the direction of
the x3-axis, which is, according to the Kirchhoff plate theory,
equivalent to an orthotropic plate. As a result of disregarding the
effect of a transverse shear deformation, the Kirchhoff plate
theory is actually restrictive in terms of providing a precise analy-
sis of thin laminated structures. However, it is still the most cel-
ebrated theory among the numerous two-dimensional models of
laminated plates from the point of view of a usefulness and in-
structiveness for an application to structural mechanics. As an
example of an application of these kinds of works, Duong and Yu
�12,13� analyzed the thermal stresses due to a low uniform oper-
ating temperature in a one-sided composite bonded repair of an
aircraft, which greatly improves the reliability of cracked aero-
space metallic structures. They showed that the effect of a out-of-
plane bending became significant, and a good agreement was
found between analytical predictions and the finite element results
in spite of disregarding the transverse shear deformation. The
analysis could also be basically applied to an isotropic plate. Due
to the anisotropic characteristics of the composite materials exten-
sively used for the structural components of an aircraft, it is also
expected that the work presented here will constitute an improved
approach for analyzing these kinds of structures.

5.1 Inhomogeneous Inclusion With a Thermal Mismatch.
As an example of an application of this work to analyzing the
stress fields due to a thermal mismatch such as that in a composite
bonded repair of an aircraft, an inhomogeneous elliptic cylindrical
inclusion thermally expanding in an orthotropic plate is consid-

ered. For a mathematical convenience, the bending problem of the
plate is considered �The extension problem would not entail more
difficulty than the bending problem in terms of an analysis.�. The
nonzero components of the eigencurvature �ij

* can be obtained by
using Eq. �10b� as

�11
* =

1

D11
* D22

* − D12
*2�

x3

��D22
* C̃11 − D12

* C̃12��1�T + �D22
* C̃12

− D12
* C̃22��2�T�x3 dx3 �42a�

�22
* =

1

D11
* D22

* − D12
*2�

x3

��D11
* C̃12 − D12

* C̃11��1�T + �D11
* C̃22

− D12
* C̃12��2�T�x3 dx3 �42b�

where �i, i=1,2, and �T are the thermal expansion coefficients of
the inclusion along the xi—directions and the temperature excur-
sion during a high-altitude cruising of the aircraft, respectively.
With the equivalent eigencurvature �ij

** obtained from Eqs. �40a�
and �40b� for �ij

* given in Eqs. �42a� and �42b�, the curvature and
the bending moment due to the localized thermal loading can be
obtained from Eqs. �23b� and �7b�, respectively, with �ij

** replac-
ing �ij

* .

5.2 Edge Dislocation. The extension problem of the Kirch-
hoff plate is mathematically the same as the plane stress problem.
Moreover, the results could be applied to the problem of a plane
strain state by appropriately replacing the elastic constants. As an
example of a plane strain problem, an edge dislocation at origin
with the Burgers vector b1 parallel to the x1-direction, as shown in
Fig. 4, is considered. Using the relationship between inclusions
and dislocations proposed by Eshelby �3�, a displacement due to
an edge dislocation is given as

ui
0 = − b1�

0

�

f i21 dx1� �43�

where the slip plane is the positive half plane x1−x2. Substituting
Eqs. �18b� and �18f� into Eq. �43�, the following is obtained:

u1
0 = b1


n=1

2

�C12 + C66��n�nHn,2 �44a�

u2
0 = − b1


n=1

2

�n
n�nHn,1 �44b�

where

Fig. 4 Schematic diagram for edge dislocation on the x2=0
plane „x1>0… with Burger’s vector b1.
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Hn = x1 ln rn
A − pn

Ax2 tan−1� pn
Ax2

x1
� �45�

Here, the extensional elastic constants Aij included in Eqs.
�18a�–�18f�, �44a�, �44b�, and �45� and the eigenvalue pn

A should
be replaced by the elastic constant Cij. This is a new form of the
solution for the problem of an edge dislocation.

5.3 Inclusion With Polynomial Eigencurvatures. Next, a
bending problem of an infinite orthotropic plate containing an
inclusion with a polynomial eigencurvature, prescribed as �14� is
discussed;

�ij
* =

12

h3�
x3

�ij
* x3 dx3 = Kij + Kijkxk

+ Kijklxkxl + ¯ , �i, j,k,l, . . . = 1,2�
�46�

where Kij ,Kijk , . . ., etc. are constants defined, respectively, by

Kij =
12

h3�
−h/2

h/2

Eijx3 dx3, Kijk =
12

h3�
−h/2

h/2

Eijkx3 dx3, etc.

�47�

where Eij ,Eijk , . . . are constants of eigenstrains given in the form
of polynomials of in-plane coordinates such as

�ij
* = Eij + Eijkxk + Eijklxkxl + ¯ , �i, j,k,l, . . . = 1,2� �48�

where Eij ,Eijk , . . . are dependent only on x3 and symmetric with
respect to the free indices i, j and Eijkl=Eijlk, Eijklm=Eijkml, etc.

Substituting Eq. �46� into Eq. �16b�, and then using the relation,
�ij =−w,ij, the curvature inside the inclusion is given by

�ij = Tijkl�x�Kkl + Tijklm�x�Kklm + Tijklmn�x�Kklmn + ¯ �49�

where, introducing an integral Hijk¯l defined by

Hijk¯l =�
�

xk ¯ xlhij d� �50�

the tensors Tijk¯l�x� are expressed in the integral Hijk¯l as

Tijk¯l�x� = − Hk¯l,ij �51�

For a mathematical convenience, an inclusion with a first order
eigencurvature, �ij

* =Kij +Kijkxk is considered. The explicit expres-
sions for Tijklm are given in Appendix C. When x is an interior
point of the inclusion, then the I-integrals, Iij in �C3a�–C3c are
constants, and all their derivatives vanish. Thus, the tensor
Tijklm�x� becomes a homogeneous linear function of x. The me-
chanical fields outside the inclusion could also be obtained, since
the I-integrals could be applied at any point of the matrix as well
as inside the inclusion.

6 Summary
Analyzed in the present work is an infinite orthotropic Kirch-

hoff plate containing an elliptic homogeneous and inhomogeneous
inclusion with an eigenstrain, where the displacement fields in the
plate are expressed in terms of the in-plane and out-of-plane dis-
placements on the mid-plane. By using Green’s functions ex-
pressed in compact real form in a Cartesian coordinates system,
which were obtained by using a Stroh-type formalism, integral
type solutions of the displacements of the in-plane and out-of-
plane direction were expressed in terms of a mid-plane eigenstrain
and eigencurvature, respectively. For an elliptic cylindrical inclu-
sion, the integrals could be explicitly expressed by calculating the
quasi-Newtonian potentials. An edge dislocation and an inclusion
with polynomial eigenstrains were also considered.
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Appendix A: Green’s Functions for Unit Concentrated
Forces in the In-Plane and the Out-of-Plane Directions

Recently, a Stroh-like formalism for an anisotropic Kirchhoff
plate has been reported �18–20�. From that formalism, solutions
for various anisotropic plate problems, which had obtained in se-
ries form, are now available in explicit compact forms �21–24�.
Green’s functions derived from those works are relatively simple
in a dual or cylindrical coordinates system; however, they are
much more complicated in a Cartesian coordinates system. More-
over, the Green’s functions are not favorable with respect to ob-
taining the Newtonian potentials associated with defect problems.

Using a slightly different method from the Stroh formalism for
an anisotropic elasticity, where the linear composite variable of
z=x1+ ipx2 instead of z=x1+ px2 is used, Green’s functions for the
unit concentrated forces in the in-plane and out-of-plane direc-
tions in an infinite orthotropic Kirchhoff plate were recently ob-
tained in Cartesian coordinates �15�. For an extension problem,
the explicit forms of the Green’s functions in the Cartesian coor-
dinates are

G11 = 

n=1

2

�A12 + A66�2�pn
A�2�n	n

A �A1a�

G12 = − 

n=1

2

�A12 + A66�pn
A�n
n�n

A �A1b�

G22 = − 

n=1

2

�n
n
2	n

A �A1c�

where the constant pn
A is the eigenvalue of a characteristic equa-

tion derived in a Stroh-like formalism and given as

pn
A = � �Ā12 − A12��Ā12 + A12 + 2A66�

4A22A66
	1/2

+ �− 1�n+1� �Ā12 + A12��Ā12 − A12 − 2A66�
4A22A66

	1/2

�A2�

where Ā12=�A11A22. The constants �n and 
n are, respectively,

�n =
pn

A

2�A66�A11 + �pn
A�2A12��A11 − �pn

A�2�A12 + 2A66��
�A3a�


n = �A11 − �pn
A�2A66� �A3b�

The functions 	n
A and �n

A are, respectively,

	n
A = ln rn

A �A4a�

�n
A = tan−1� pn

A�x2 − x2��
x1 − x1�

� �A4b�

where rn
A is defined as

rn
A = ��x1 − x1��

2 + �pn
A�2�x2 − x2��

2�1/2 �A5�

The functions 	n
A and �n

A are called quasi-harmonic functions,
because they are not harmonic functions in the coordinates �x1 ,x2�
but harmonic in the transformed coordinates �x1 , pn

Ax2�; thus
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� �2

�x1
2 +

�2

��pn
Ax2�2�	n = 0 �A6�

with no summation over the subscript n. The Green’s function Gij
is symmetric in ij, that is, Gij =Gji.

For a bending problem, the slope of the mid-plane �i is used to
evolve the inclusion problem. The slope �i corresponds to the
components of the derivatives of the Green’s functions as �i=
−G33,i. The explicit form for the derivatives of the Green’s func-
tions in the Cartesian coordinates are given as

G33,1 = 

n=1

2


n�x1	n
D − pn

Dx2�n
D� �A7a�

G33,2 = − 

n=1

2

pn
D
n�pn

Dx2	n
D + x1�n

D� �A7b�

where the constant pn
D is the eigenvalue of the characteristic equa-

tion for a bending problem of an orthotropic Kirchhoff plate, de-
rived in a Stroh-like formalism and given as

pn
D = �1

2
�D12 + 2D66

D22
+�D11

D22
�	1/2

+ �− 1�n+1�1

2
�D12 + 2D66

D22
−�D11

D22
�	1/2

�A8�

The constants 
n are


n =
pn

D

2��D11 − �pn
D�4D22�

�A9�

The functions 	n
D and �n

D correspond to the functions 	n
A and �n

A,
respectively, when pn

A is replaced by pn
D.

Appendix B: Logarithmic Quasi-Newtonian Potential

The two-dimensional integral ��*�1/ pn
*�ln rn d�*�x�1 , pn

*x�2� in
Eq. �29� could be obtained after some manipulation of the inte-
gration for a three-dimensional ellipsoid, where the longest axis in
the x3-direction approaches infinity. More details of the evolution
of this are given in the paper of Yang et al. �14�, in which the
integration result of the potential function is

�n
* = −

1

4pn
* �IN��N� − x̄rx̄rIR

N��N�� �B1�

where the repeated lower case indices are summed from 1 to 2,
and the upper case indices take on the same numbers as the cor-
responding lower case ones but they are not summed; for
example,

x̄rx̄rIR
N��N� = x̄1

2I1
N��N� + x̄2

2I2
N��N�

IN��N�
pn

* =
I1��1�

p1
* where n = 1 =

I2��2�
p2

* where n = 2 �B2�

The transformed coordinates x̄1 and x̄2 are x1 and pn
*x2, respec-

tively. The closed form of the functions IN��N� and IR
N��N� are

presented as follows:

IN��N� = − 4�a1pn
*a2�ln��a1

2 + �N + ��pn
*a2�2 + �N� − ln�a1 + pn

*a2��

�B3a�

I1
N��N� =

4�a1pn
*a2

�pn
*a2�2 − a1

2���pn
*a2�2 + �N

a1
2 + �N

− 1	 �B3b�

I2
N��N� =

4�a1pn
*a2

a1
2 − �pn

*a2�2�� a1
2 + �N

�pn
*a2�2 + �N

− 1	 �B3c�

where �N is zero for the interior point x of � and for the exterior
point is the largest positive root of the following equation:

x1
2

a1
2 + �N

+
�pn

*x2�2

�pn
*a2�2 + �N

= 1 �B4�

which is given by

�N = 1
2 �x̄mx̄m − āmām + ��x̄mx̄m − āmām�2 + 4�x̄1

2ā2
2 + x̄2

2ā1
2 − āmām��

�B5�

where the transformed semi-axes of the ellipse, ā1 and ā2, are a1
and pn

*a2, respectively.

Appendix C: Explicit Expression of the Tensor Tijklm

The two-dimensional integral ��x�k¯x�l ln rnd� could be ob-
tained after some manipulation of the integration of a three-
dimensional harmonic potential for an ellipsoid. More details are
given in a paper by Yang et al. �14�. Introducing integrals defined
by

�n
�i� =�

�

x�̄i ln rn
D d�, i = 1,2 �C1�

the components of the tensors Tijklm, which is symmetric with
respect to the interchange of i and j or k and l, could be explicitly
written as

T11111 = 

n=1

2

�n
n�n,11
�1� T11112 = 


n=1

2

�n
n�n,11
�2�

T11121 = 

n=1

2

2D66
n�n,21
�1� T11122 = 


n=1

2

2D66
n�n,21
�2�

T11221 = − 

n=1

2 �4D66 −
�n

�pn
D�2�
n�n,11

�1� T11222 = − 

n=1

2 �4D66

−
�n

�pn
D�2�
n�n,11

�2�

T12111 = 

n=1

2

�n
n�n,12
�1� T12112 = 


n=1

2

�n
n�n,12
�2�

T12121 = 

n=1

2

2D66
n�n,22
�1� T12122 = 


n=1

2

2D66
n�n,22
�2�

T12221 = − 

n=1

2 �4D66 −
�n

�pn
D�2�
n�n,12

�1�

T12222 = − 

n=1

2 �4D66 −
�n

�pn
D�2�
n�n,12

�2�

T22111 = 

n=1

2

�n
n�n,22
�1� T12112 = 


n=1

2

�n
n�n,22
�2�

T22121 = − 

n=1

2

2D66
n�pn
D�2�n,12

�1� T22122 = − 

n=1

2

2D66
n�pn
D�2�n,12

�2�
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T22221 = − 

n=1

2 �4D66 −
�n

�pn
D�2�
n�n,22

�1� �C2�

T22222 = − 

n=1

2 �4D66 −
�n

�pn
D�2�
n�n,22

�2�

where the logarithmic potential �n
�i� is expressed in I-integrals as

�n
�1� = −

1

4pn
Da1

2x1�I1
N��N� − x̄rx̄rIR1

N ��N�� �C3a�

�n
�2� = − 1

4a2
2pn

Dx2�I2
N��N� − x̄rx̄rIR2

N ��N�� �C3b�

where the higher order I-integrals Iij
N��N� could be expressed by

the lower ones Ii
N��N� given in Appendix B as �14�

I12
N ��N� = I21

N ��N� =
I2

N��N� − I1
N��N�

a1
2 − �pn

Da2�2 �C4a�

3I11
N ��N� =

4�a1pn
Da2

�a1
2 + �N����N�

− I12
N ��N� �C4b�

3I22
N =

4�a1pn
Da2

��pn
Da2�2 + �N����N�

− I12
N ��N� �C4c�
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Size-Dependent Elastic State of
Ellipsoidal Nano-Inclusions
Incorporating Surface/Interface
Tension
Using a tensor virial method of moments, an approximate solution to the relaxed elastic
state of embedded ellipsoidal inclusions is presented that incorporates surface/interface
energies. The latter effects come into prominence at inclusion sizes in the nanometer
range. Unlike the classical elastic case, the new results for ellipsoidal inclusions incor-
porating surface/interface tension are size-dependent and thus, at least partially, account
for the size-effects in the elastic state of nano-inclusions. For the pure dilatation case,
exceptionally simple expressions are derived. The present work is a generalization of a
previous research that addresses simplified spherical inclusions. As an example, the
present work allows us, in a straightforward closed-form manner, the study of effect of
shape on the size-dependent strain state of an embedded quantum dot.
�DOI: 10.1115/1.2338052�

1 Introduction
The determination of elastic states of an embedded inclusion is

of considerable importance in a wide variety of physical prob-
lems. In the classical elasticity context this problem was first
solved rigorously by �1�. The latter work, both with and without
modifications, has been employed to tackle a diverse set of prob-
lems: Localized thermal heating, residual strains, dislocation-
induced plastic strains, phase transformations, overall or effective
elastic, plastic and viscoplastic properties of composites, damage
in heterogeneous materials, quantum dots, interconnect reliability,
microstructural evolution, to name a few. The classical solution of
an embedded inclusion neglects the presence of surface or inter-
face energies and indeed, the effects of those are negligible except
in the size range of tens of nanometers, where one contends with
a significant surface-to-volume ratio. Clearly, the influence of
surface/interface energies only extends to the nanoscale regime, as
illustrated by various mechanical and optoelectronic applications
such as nanostructures, nanocomposites, thin films, nanoelectron-
ics, and quantum dots �2–10�. With this in mind, in a recent work,
Sharma and Ganti �8� extended Eshelby’s formalism to cover
nano-inclusions by incorporating coupled bulk-surface elasticity.
Explicit size-dependent expressions were presented for the elastic
state of simplified spherical and circular shapes under radially
symmetric loadings along with several illustrative applications.
Sharma and Ganti �8� conclude that for shapes that admit a con-
stant curvature �e.g., sphere, circular shape� and subjected to ra-
dial loadings, the elastic states are uniform. In the present work,
we revisit the inclusion problem to address the more generalized
ellipsoidal shape. We note here also several other works that have
recently appeared addressing surface energy effects in inclusion
problems: Duan et al. �11� generalized the work of Sharma and
Ganti �8� to incorporate eigenstrains or loadings of arbitrary sym-
metry in spherical inhomogeneities. They find that interior stresses

and strains in spherical inhomogeneities are nonuniform if the
eigenstrain or applied stresses are not radially symmetric. This
conclusion is also affirmed independently by the work of Lim
et al. �12�. Effective size-dependent properties of composites con-
taining spherical inclusions have been addressed by Duan et al.
�11� while Dingreville et al. �13� investigate the “effective” prop-
erties of nanoparticles, nanowires, and thin films.

Apart from the aforementioned works related to surface energy,
in the classical elasticity context, extensive work has been done
on the embedded inclusion problem and related issues. For the
sake of conciseness, and given the existence of several readily
available reviews on this topic, a detailed literature survey is
avoided in this work. Wherever appropriate, relevant papers are
cited contextually. The reader is referred to the following mono-
graphs, review articles, books and references therein: Mura �14�,
Nemat-Nasser and Hori �15�, Markov and Preziosi �16�, Weng
et al. �17�, Bilby et al. �18�, Mura et al. �19�, and Mura �20�.

In Sec. 2, we discuss some preliminary concepts and issues
related to surface/interface energies and inclusions. In Secs. 3 and
4, we employ the tensor virial method of moments to establish
approximate solutions of various orders to the ellipsoidal nano-
inclusion problem. Some simple expressions are deduced for the
purely dilatational problem in Sec. 5. Numerical results and the
application to quantum dots are presented in Sec. 6 followed with
a summary and the major conclusions.

2 Preliminaries and Background
In this section, the mathematical preliminaries draw on the for-

mulations of Gurtin and Murdoch �21�, Murdoch �22�, and Gurtin
et al. �23�. In the context of inclusions, a reference to the words
“surface” or “interface” is meant for the internal free surface of
cavities or adjoining region of the solid inclusion and the sur-
rounding matrix. In the present work, we shall use these words
and their variants interchangeably.

Consider an arbitrarily shaped smooth interface between an em-
bedded inclusion and surrounding host matrix, characterized by a
unit normal n. Let this interface be “attached” to the bulk �i.e.,
both inclusion and matrix� without slipping or any other disconti-
nuity of displacements across it. This implies that we consider
only a coherent interface. In contrast to the classical case where
surface energies are neglected, we now require that the interface
of the inclusion and the matrix be endowed with a deformation
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dependent interfacial energy density, �. The interfacial or surface
energy density is positive definite. This quantity is distinct from
the bulk deformation dependent energy density due to the differ-
ent coordination number of the surface/interface atoms, different
bond lengths, angles and a different charge distribution �24�.

Within the assumptions of infinitesimal deformation and a con-
tinuum field theory, the concept of surface stress and surface ten-
sion can be clarified by the �assumed linearized� relation between
the interface/surface stress tensor, �s, and the deformation depen-
dent surface energy, ���s�

�s = �oPs +
��

��s �1�

Where applicable, superscripts B and S indicate bulk and surface,
respectively. Here, �s is the strain tensor for surfaces that will
result from the projection of the conventional bulk strain tensor on
to the tangent plane of the surface or interface while �o is the
deformation independent surface/interfacial tension. The surface
projection tensor, Ps which maps tensor fields from bulk to sur-
face and vice versa is defined as

Ps = I − n � n �2�

Here, “I” is the identity tensor. Consider an arbitrary vector v. The
tensor or dyadic product � extends two vectors into a second
order tensor, i.e., in indical notation, Aij =aibj. The surface gradi-
ent and surface divergence, then, take the following form �23�:

�sv = �vPs

�3�
divs�v� = Tr��sv�

Here we have also defined the surface gradient operator ��s� and
the surface divergence �divs�. “Tr” indicates the trace operation.
We shall employ both index and boldface notation as convenient.
Unless otherwise stated, all tensors are referred to a Cartesian
basis and isotropy is assumed throughout.

The equilibrium and isotropic constitutive equations of bulk
elasticity are

div �B = 0 �4a�

�B = �ITr��� + 2�� �4b�

At the interface, the concept of surface or interface elasticity
�21,23�, ordinarily ignored in the classical formulation is intro-
duced

��B · n� + divs �S = 0 �5a�

�s = �oPs + 2��s − �o��s + ��s + �o�Tr��s�Ps �5b�

Here, � and � are the Lamé constants for the isotropic bulk ma-
terial. Isotropic interfaces or surfaces can be characterized by sur-
face Lamé constants �s, �s, and surface tension, �o. The square
brackets indicate a jump of the field quantities across the inter-
face. It is to be noted that only certain strain components appear
within the constitutive law for surfaces due to the 2�2 nature of
the surface stress tensor �i.e., only the tangential projection of the
strains on the interface are included consequently, Ps .n=0�. In the
absence of surface terms, Eq. �5a� reduce to the familiar normal
traction continuity equations.

Thus, while the infinitesimal strain tensor in the bulk �both
inclusion and matrix� is defined as usual in Eq. �6�, the surface
strains involve the use of projection tensor �Eq. �7��

� = 1
2 ��u + �uT� �6�

�s = 1
2 �Ps�su + �su

TPS� �7�

Implicit in Eq. �7� is our assumption of a coherent interface. An
incoherent interface requires additional measures of strain. The
most generalized treatment of deformation measures that allows

projections of jump in the displacement gradient �i.e., relative
strain, twist, normal shear, tilt� and jumps in the normal and tan-
gential displacement �stretch and slip� in addition to the coherent
deformation considered in Eq. �7� has been addressed in detail by
Gurtin et al. �23�.

Consider a stress-free uniform transformation strain prescribed
within the domain of the inclusion �Fig. 1�. As per Mura’s defini-
tion of an inclusion �14� we assume �for the moment� identical
material properties for the inclusion and the matrix. The scenario
where material properties differ is referred to as the inhomogene-
ity problem �14� and will be discussed in Sec. 6.

Sharma and Ganti �8� have derived the following general inte-
gral equation for arbitrary shaped inclusion linking the actual
strain in the inclusion to the uniform transformation strain

�8�

Here G is the Green’s tensor for isotropic classical elasticity �1�.
�* is the so-called “eigenstrain” or a stress-free transformation
strain such as due to for example, phase transformation, thermal
expansion mismatch, lattice mismatch among others. The under-
lined term in Eq. �8� indicates the extra contributions due to
surface/interface energy. S is the classical size-independent Es-
helby tensor �see �1�, Appendix A and �14��. The notation, sym�.�,
represents the symmetric part of a second order tensor, A, e.g.,
sym�A�= 1

2 �A+AT�. Some further details on Eshelby’s tensor for-
malism are included in Appendix A for ready reference.

Further simplification of Eq. �8� is difficult without additional
assumptions regarding inclusion shape. Equation �8� implicitly
gives the modified Eshelby’s tensor for inclusions incorporating
surface energies. This relation is implicit since the surface stress
depends on the surface strain, which in turn is the projection of
the conventional strain ��� on the tangent plane of the inclusion-
matrix interface.

For the spherical shape, Eq. �8� can be explicitly re-written as
�8�

� = S:� * −
2��s + �s�

3KRo
�S:I�Tr�Ps�Ps� −

2�o

3KRo
�S:I� �9�

Here we note that for a sphere, curvature is the reciprocal of its
radius, �=1/Ro and K is the bulk modulus. To allow easy manipu-
lation and in order to get analytical form of Eshelby tensor, it is
necessary to resolve the fourth order tensors along the following
basis: 1

3	ij	kl and 1
2 �	ik	 jl+	il	 jk�− 1

3	ij	kl �see for example, �25��.
And using the spherical Eshelby tensor �14�, Eq. �9� can be re-
written �in spherical polar basis�

Fig. 1 Schematic of the problem
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�rr = �

 = ��� =
3K�* − 2�o/Ro

4� + 3K + 4��s + �s�/Ro
�10�

A general feature of the integral Eq. �8� can be realized by noting
that

divs �s = divs�CsPs�Ps + �oPs� �11�
The surface divergence of surface stress tensor can only be uni-
form if the classical “bulk” strain as well as the projection tensor
is uniform over the inclusion surface. Consider the identity

divsP
s = 2�n �12�

Here � is the mean curvature of the inclusion. For a general el-
lipsoid the curvature is nonuniform and varies depending upon the
location at the surface. Thus, unlike for the spherical or circular
shape, even for purely symmetric transformation strains such as
pure dilation, we can expect a nonuniform strain state rendering
perhaps impossible an exact solution of Eq. �8� for the general
ellipsoidal shape.

3 Tensor Virial Method of Moments for Approxima-
tions to the Ellipsoidal Problem

The nonuniformity of the ellipsoidal curvature makes it difficult
to solve for the elastic state via the implicit system of integral
equations listed in Eq. �8�. The direct use of the integral equation
�8� is not very convenient for our purposes and thus in the remain-
der of this paper, based on some simplifying assumptions, we
explore the so-called tensor virial method of moments �26� to
deduce an approximate solution for an ellipsoidal inclusion under-
going a uniform transformation strain.

First, we only consider the effect of surface tension �i.e., �o� and
ignore deformation dependent surface elasticity, for example, in
the result of Eq. �10�, the term 4��s+�s� /R0 would be discarded.
This assumption is reasonable for small strains and indeed, as has
been found in some technological applications, the deformation
dependent surface elasticity effects can often be small compared
to surface tension effect. Of course, in certain classes of problems,
essential physics is lost by abandoning the deformation dependent
surface elasticity �e.g., effective properties of nanocomposites,
�8,11�; dislocation nucleation in flat nanosized thin films, �3��.
However, for several problems of technological interest, consid-
eration of �o is sufficient. Note that the recent work of Yang �27�
may require further clarification as he proposes that the effective
size-dependent properties of nanocomposites depend on surface
tension of inhomogeneities and fails to include the effect of sur-
face elasticity which �according to us� is the sole contributor to
the effect Yang purports to investigate. Since the effect of surface
tension manifests itself as a residual type effect �i.e., independent
of external loading�, we can immediately employ Eshelby’s clas-
sic gendanken of cutting and welding operations �1� to put a
physical perspective on the problem. Take the inclusion �contain-
ing a prescribed physical eigenstrain, say, a thermal expansion
mismatch strain or that due to lattice mismatch� out of the matrix
but with a surface tension equivalent to the interfacial tension of
inclusion-matrix. From a classical perspective the inclusion

should relax to a strain equal to the physical eigenstrain. However,
in the context of coupled surface-bulk elasticity, an additional
strain ensues due to the presence of interfacial tension. Thus the
total effective eigenstrain is equal to the superposition of the ini-
tial prescribed eigenstrain �due to a physical mechanism� and the
strain state of an isolated un-embedded inclusion under the action
of a surface tension. This is shown schematically in Fig. 2. Math-
ematically

�*T�x� = �*P�x,physical cause� + �I�x,�o,�� �13�
Here we have indicated the major functional dependence of each
type of eigenstrain. The superscripts “T,” “P,” and “I” stand for
“total,” “physical,” and “isolated” respectively. In summary, if we
are able to evaluate �I, Eshelby’s classical tensor type concept can
be employed to determine the elastic state of the inclusion incor-
porating surface energy, i.e.,

��x� = Ŝ�x�:�*T�x� �14�

Here Ŝ is an Eshelby tensor type integral operator which defaults
to Eshelby’s classical tensor �S� for uniform eigenstrains. For an
inhomogeneous eigenstrain, the actual strain is then determined

by the action of the integral operator, Ŝ. This distinction is neces-
sary since even though �in this work� the physical eigenstrain is
assumed to be �as often is� uniform, the contribution of surface
tension is nonuniform, except in the case of a sphere and infinitely

long circular cylindrical shape. Further details on Ŝ are found in
Appendix A. Note that the size dependence enters via the simu-
lated eigenstrain, �I. For spherical and cylindrical shapes, the cal-
culation of this strain is trivial. For example, in the spherical in-
clusion case, the isolated strain �in spherical polar basis� is merely
�rr

I =�


I =���

I =−2�o /3KRo. Substituting this into �13� and using
Eshelby’s tensor �Appendix A� reproduces Eqs. �9� and �10� and
the result of Sharma and Ganti �8� provided that the surface elas-
ticity constants, ��s ,�s�→0 in their formula, are set to zero which
then also coincides with the result of Cahn and Larche �28�.

For an ellipsoidal inclusion, even the isolated solution is not so
trivial. We construct an approximate solution using the tensor
virial method developed by Chandrasekhar �26,29�.

Consider an isolated �i.e., un-embedded� triaxial ellipsoid made
from the same material as the inclusion �Fig. 3�. Further, let it

Fig. 2 Schematic of the solution

Fig. 3 Schematic of the problem for the isolated ellipsoidal
particle under a surface tension
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contain an eigenstrain identical to that of the inclusion, �*P. Now,
to incorporate surface energy �as per the discussion of the preced-
ing paragraph�, let the isolated ellipsoidal particle also be under
the influence of a surface tension numerically equivalent to the
interfacial tension of inclusion-matrix. A coordinate system with
an origin at the ellipsoid centroid coincident with the principal
axes of the ellipsoid �a1 ,a2 ,a3� is adopted.

In the absence of any external body forces and in static equi-
librium, the equation of motion for the isolated ellipsoidal particle
can be written as

div �I = 0 �15a�

�I = C:�I �15b�

Where we note that �I can be found by simply inverting Eq. �15b�.
We take the first moment of Eq. �15a� to obtain

�
V

xi

��ik
I

�xk
dV =�

V

��x j�ik
I �

�xk
dV −�

V

�ij
I dV = 0 �16a�

⇒�
S

x j�ik
I�−�dSk −�

V

�ij
I dV = 0 �16b�

Gauss’s theorem is used to obtain the surface integral in Eq. �16b�.
A superscript ��� sign indicates that the referred quantity is ap-
plicable at distances infinitesimally close to the bounding surface
but located in the interior. Since the inclusion is isolated, the �
�
quantities are identically zero. Recall that for uniform surface ten-
sion, the jump in the normal tractions is proportional to the sur-
face tension �Eq. �5a��, i.e.,

��I . n� = − �I�−� . n = − �on div n �17�

From which we obtain the relation

�
V

�ij
I dV = − �o�

S

x j div ndSi �18�

Consistent with the notion of taking a first order moment, we
assume that �I is uniform within the ellipsoidal particle. Then, as
clearly apparent, Eq. �18� furnishes us a method to find the “av-
erage” strain of an isolated inclusion under the action of surface
tension and eigenstrain via a �relatively� simpler surface integral
on the right hand side. Note that, effectively, Eq. �18� approxi-
mates the nonuniform boundary condition at the inclusion-matrix
interface in Eq. �5a� in an “average” sense. Implicit in this as-
sumption is the notion that the average inclusion strain in the
ellipsoidal inclusion is representative of the actual nonuniform
strain that one would obtain from a rigorous solution of the inte-
gral equations in Eq. �8�. Equation �18�, which is the heart of the
first moment approximation, is exact in three cases: �i� For inclu-
sions with constant, curvature, i.e., spherical and circular shape
�ii� the trivial case when surface tension is absent, �iii� for large
“inclusion” size where curvature is effectively negligible. Clearly,
the first moment approximation is expected to be inaccurate when
ellipsoidal aspect ratios become extreme, e.g., flat crack like in-
clusion, and as such should be avoided. Since we are constructing
an approximation for an ellipsoid as the associated fields depart
marginally from the uniform case �sphere�, our solution is not
expected to satisfy the two-dimensional asymptotic limit when the
ellipsoid degenerates to a circular cylinder �for which also the
exact analytical solutions are known�. To approximate an elliptical
cylinder, our analysis must be repeated in a two-dimensional
framework �although in that case, complex analysis tools may be
more efficient possibly leading to exact solutions�.

Using a Lemma by Rosenkilde �30,31�—see Appendix B, the
surface integral in Eq. �18� can be further simplified to

�o�
S

x jnk,kdSi = �o�
S

�	ij − nin j�dS = 2Mij �19�

Note that the rightmost integrand in Eq. �19� is just the surface
projection tensor. The derivation of Eq. �19� and other ellipsoidal
surface integrals involving higher order moments of div n are
given in Appendix B. We can then write the surface contributed
eigenstrain of the ellipsoidal inclusion in the following simple
manner:

�I = −
2

V
�C�−1M �20�

The tensor M tensor can be reduced to

Mii = ��a1a2a3�2�o�Aj + Ak� �i � j � k� �21a�

Ai =�
0

�
dt

��ai
2 + t2�

, �2 = �a1
2 + t2��a2

2 + t2��a3
2 + t2� �21b�

Summation convention has been suspended in Eq. �21�. Our
choice of coordinate system coincident with the principal axes of
the ellipsoid and the ellipsoidal symmetry in general restrict non-
trivial terms to only the diagonal ones. The Ai integrals are similar
to the ones that appear in Eshelby’s �1� classical work �but not the
same�. They are easily cast in terms of elliptical integrals

A1 =
sin2 � cos2 
F�
,�� + cos2 �E�
,�� − �a3/a2�sin � cos �

a1
3a2 sin3 � cos2 


A2 =
cos2 
F�
,�� − �a3/a2�E�
,�� + �a3/a2�sin2 
 sin � cos �

a1a2
3 sin3 � cos2 
 sin2 


�22�

A3 =
E�
,���a3/a2�2F�
,��

a1a2a3
2 sin3 � sin2 


Here, the following ordering of semi-axes has been assumed, a1
�a2�a3. E and F are the incomplete elliptical integrals of the
first and second kind, respectively

E�
,�� =�
0

�
d�

�1 − sin2 � sin2 


F�
,�� =�
0

�

�1 − sin2 � sin2 
d� �23�


 = sin−1 a1

a2
��a2

2 − a3
2�

�a1
2 − a3

2�
, � = sin−1 a3

a1

Equations �22� are obtained by substituting t
=a3 sin � /�sin2 �−sin2 � in Eq. �21�.

Obviously, for simpler shapes such as spheres, circular cylin-
ders and spheroids, these elliptical integrals �E and F� degenerate
to well-known elementary expressions �e.g., �32��. The final �in-
terior� strains and stresses of the embedded ellipsoidal inclusion
can be conveniently expressed as

� = S:�*T = S:	�*P −
2

V
C−1M


�24�

� = C:�S − I�:	�*P −
2

V
C−1:M


Note that we have used the Eshelby tensor �S�, not the operator

�Ŝ�, since in the first moment approximation, the total eigenstrain
is uniform.
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4 Higher Order Virial Moments
In the previous section a first order virial moment of the equa-

tions of motion led to the approximation of uniform strain in the
ellipsoidal particle under the influence of a surface tension and
consequently uniform strain in the embedded inclusion. Succes-
sively higher order moments of the equations of motion can be
taken to obtain more accurate approximations. To obtain a non-
trivial set of self-sufficient equations, the desired strain must be a
polynomial of degree one m−1 where m is the order of the mo-
ment, e.g., in the previous section, a first order moment was taken
consistent with a uniform strain �zero order polynomial�.

The equations of motion �Eq. �15a�� are now multiplied by xjxm
and integrated over the volume. Analogous to Eq. �16�, we arrive
at

�
S

xjxm�ik
I�−�dSk −�

V

�xm�ij
I + xj�im

I �dV = 0 �25�

Consistent with the second order virial moment, we shall assume
the isolated elastic state to be a polynomial of degree �m−1�,
which in the present case is a linear function of position, i.e.,

�ij
I = �ij

2 = �ij
1 + aijkxk �26�

Here, the coefficients ajik are constants to be determined with the
aid of Eq. �25�. The first term in Eq. �26�, �ij

1 , is determined �as in
the preceding section� by means of the first order viral moment
equation.

Straightforward manipulation yields

�
V

��ij
I xm + �im

I xj�dV = − 2�Mijm + Mimj� �27�

Where we have used �Appendix B�

�o�
S

xjxk div ndSi = 2Mijk + 2Mikj �28a�

Mijk =
�o

2 �
S

�	ij − ninj�xkdS �28b�

The reduction to Eq. �28b� is important since it immediately al-
lows us to note that the integrand is manifestly an odd function.
The ellipsoidal shape possesses three planes of symmetry and
consequently an odd function must integrate out to zero on its
surface. Thus, the second order virial moment approximation de-
generates to the first moment approximation of the previous sec-
tion, i.e., aijk=0. This of course implies that the “average” strain
computed in the previous section is correct up to �first� linear
order. Thus, at least a third order moment �or a quadratic approxi-
mation in the strain� is required to introduce a nonuniform strain
in the elastic solution of an isolated ellipsoidal particle �and hence
embedded inclusion�.

In closure of this section, we point out the evident fact that due
to the lengthy and tedious expressions involved, implementation
is somewhat inconvenient beyond the first order approximation.

5 A Purely Dilating Ellipsoidal Inclusion
For the pure dilatational case ��*P=�pI�, exceptionally simple

expressions can be derived which we now proceed to outline. We
only address the uniform strain approximation �i.e., first order
virial moment�. Consider Eq. �24� which provides the strain tensor
for an embedded inclusion incorporating surface/interface ener-
gies via the second order tensor, M. Taking trace on both sides we
obtain

Tr��� = Tr�S:�*T� = Tr�S:�*P� − Tr	S:
2

V
C−1M
 �29�

At this point we appeal to a general result derived by Milgrom-
Shtrikman �33� which specifies that the trace of classical Eshel-
by’s tensor is a constant for all shapes, i.e., in other words, the
dilatation within an inclusion is independent of shape. Equation
�29� then transforms to

Tr��� = �1 + �

1 − �
��p − Tr	 2

V

 1

2�
SijpqMpq +

2� − 3K

18�K
SijmmMqq�


�30�
This can be further simplified to

�31�
The first term in Eq. �31� is simply the Milgrom-Shtrikman �33�
trace valid for all shapes and as apparent solely a function of
Poisson ratio of the matrix. The second term which involves M
can be made more explicit by using Eq. �21a�

Tr�M� = 2��a1a2a3�2�o�Ai + Aj + Ak� = A�o �32�

where we have used the definition of surface area �A�. Further,
decomposing, M into a trace and trace-free part, i.e., M
= 1

3 Tr�M�I+M� final result then takes a simpler form

�33�
A for a triaxial ellipsoid is usually expressed as

A = 2�c2 +
2�b

�a2 − c2
��a2 − c2�E�
� + c2
�

�34�

sn�
,k� =�1 −
c2

a2 ; k =
a

b
�b2 − c2

a2 − c2

Here E is the complete elliptical integral of the second kind and
inversion of the Jacobi elliptic function sn is required. Volume is
simply �4�a1a2a3 /3�. The form of our results presented in Eq.
�33� is especially convenient in that one can judge the departure
form “shape isotropy” �i.e., spherical shape� by the magnitude of
M� �which is identically zero for a sphere�. One can verify �once
again� that upon substituting A /V=3/R0 and M�=0 the spherical
inclusion result of Sharma and Ganti �8� is recovered provided
one ignores the deformation dependent terms in their expression.
The new results for dilatation depart from the classical Milgrom-
Shtrikman trace since A /V and M� are both shape-dependent.
Size-dependency, obviously, also enters through M� /V and A /V.

6 Numerical Results and Applications to Shape and
Size Effects in Band Gap of Quantum Dots

The incorporation of surface size-effects in the inclusion prob-
lem extends all previous application areas of Eshelby’s inclusion
problem to the nanoscale. The present solution, now also allows
study of shape effects beyond trivial shapes such as spherical or
circular.

In the previous sections, identical material properties were as-
sumed for the matrix and the inclusion. The differing elastic con-
stants can be taken care of easily through Eshelby’s equivalent
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inclusion principle �1,14� when the eigenstrain is uniform �which
is the case in our first order moment approximation�. The equiva-
lent inclusion principle was extended to the polynomial case by
Sendeckyj �34� and thus can in principle be used for higher order
moment approximations if desired although we hasten to point out
that one must contend with yet more tedious expressions. First
some general results are presented for inclusions followed by dis-
cussion of our results for quantum dots �inhomogeneities�. The
material parameters used for the quantum dot are summarized for
convenience in Table 1 �Appendix C� and the physical eigenstrain
is identified with the lattice mismatch between the quantum dot
and the surrounding matrix. When discussing the applications to
quantum dots, the differing properties of the inclusion and the
matrix are taken into account using Eshelby’s equivalent condition
�1,14�

CI
S:��f + �p −
2

V
�CI�−1M� − ��p −

2

V
�CI�−1M��

= CM
S:��f + �p −
2

V
�CI�−1M� − ��f + �p −

2

V
�CI�−1M��

�35�

Here superscripts “I” and “M” indicate inhomogeneity and matrix,
respectively. Equation �35� allows the determination of the ficti-
tious eigenstrain, � f, necessary to simulate the perturbation due to
differing elastic constants of the matrix and the inhomogeneity.

6.1 General Results. In this section, we assume an inclusion
undergoing a dilatational transformation strain. The effect of as-
pect ratio is studied by for both prolate �a1=a2�a3� and oblate
�a1=a2�a3� geometry. Obviously our results are generic enough
to tackle arbitrary ellipsoidal shapes; prolate and oblate cases are
illustrated for a clearer insight into the shape effects.

Percentage deviation of the dilation from the spherical shape is
shown for both prolate and oblate spheroids in Figs. 4�a�–4�d�.

The results are plotted with respect to spheroid size �a1� and
aspect ratio �r=a3 /a1�. As can be appreciated the presence of
surface tension renders the solution difficult to normalize hence
for a better perspective, results are plotted for three different para-
metric values of the eigenstrain �P* �0.02, 0.04, and 0.06�. In Figs.
4�a� and 4�b�, three aspect ratios �a3 /a1=r=1.5,2.5,5� are shown.
Clearly, the effect of shape depends on both size and the magni-
tude of the physical eigenstrain. Keeping in mind the rather typi-
cal value of surface tension we chose �1.33 J /m2�, consider the
case of 2% mismatch strain which is about the norm for quantum
dots/substrate systems grown using the Stranski-Krastanov
method. For this case, even up to 2 nm inclusion size �at an aspect
ratio of 5�, the departure from the spherical shape �i.e., Milgrom-
Shtrikman trace� is no more than 10%. Shape effects, however,
get rapidly appreciable below 2 nm reaching almost 30% for an
inclusion size of 1 nm. For larger mismatch eigenstrains �4% and
6%, respectively� the shape effects are indeed small barely reach-
ing 6% deviation from the spherical shape at a mismatch of 6%
and aspect ratio of 5. Figures 4�c� and 4�d� yields similar conclu-
sions albeit different magnitudes.

There is a weak dependence of dilation on shape. One though
does expect a quite a stronger effect on the principal strains which
is illustrated for prolate inclusions in Fig. 5. It can be seen the
strains inside the inclusion exhibit a strong nonhydrostatic effect.
The equivalence of �11 and �22 is due to the obvious symmetry of
the geometry.

6.2 Shape Effects in Quantum Dots. We next employ the
present results to study the effect of quantum dot shape on the
size-dependent strain and consequently its band gap. Quantum
dots �QD� are of immense technological importance and are typi-

Table 1 Properties used in numerical calculations

Property Value

Eg
� �eV� 1.94 �36�

ac+av �eV� 8.3 �36�
�M �GPa� 67
KM �GPa� 102
KH �GPa� 168
�H �GPa� 95
�o �J /m2� 1.33

Fig. 4 „a…–„d…: Effect of shape on size-dependent dilatation of ellipsoidal
inclusions
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cally embedded in another semiconductor material with differing
elastic constants and lattice parameter. The ensuing elastic relax-
ation within the QD is well known to impact their opto-electronic
properties �35�. Acknowledging that quantum dots are often “fab-
ricated” in the sub 10 nm regime, in our previous work �8�, we
reported significant shifts in band structure and optoelectronic
properties for very small spherical quantum dots when one incor-
porates size-effects due to surface energies. While in most semi-
conductors the band structure is sensitive to all strain components,
the major influence comes from the dilatation. From a classical
point of view �based on classical elasticity theory�, quantum dot
optoelectronic properties have generally been considered rela-
tively insensitive to shape �e.g., Andreev et al. �36��—although
one can argue that this conclusion is a consequence of the several
simplifying assumptions that typically made while proceeding to
analytically calculate strain-band gap coupling. In light of Figs. 4
and 5 and the work of Sharma and Ganti �8� we can conclude that
while size-effects due to surface effects may be significant at very
small sizes, shapes effect is of secondary importance. A simple
first order calculation can provide a numerical order to the shape
effect1

E� + Esurf�Ro,a3/a1� + Ecl = E� + �ac + av���kk − �kk
*T�

+ O�nondilatational terms� �36�

Where Esurf is the band gap shift due to the size and shape depen-
dent contribution from surface energy induced strains while Ecl is
the corresponding shift due to classical size-independent and �in
the dilatational case� shape independent strain and finally E� is the
unstrained bulk crystal band gap. Here �ac+av� represents the
dilatational deformation potential where, as indicated, we have
ignored anisotropic terms both in elastic calculations as well as
electronic calculations. Note that for the purposes of band struc-
ture calculations, the eigenstrain must be subtracted from the com-
patible strain. We take as an example, the technologically impor-
tant In32GaN quantum dot system embedded in a GaN matrix. We
fix the size of the quantum dot at a1=a2=1 nm to maximize the
shape effect. We then obtain �E �net band gap shift due to shape
at a1=a2=1 nm, r=1, and r=5� of about 52 meV which is well
beyond the strict tolerances for many optoelectronic devices �35�.
At a more realistic quantum dot size of 5 nm, we obtain an error

of 7 meV which is small and most likely in the “noise” regime
given the uncertainties in the determination of various other pa-
rameters of quantum dots �size, shape, material properties, etc.�
that may have greater influence on the band structure than the
variation in shape which we discuss.

7 Summary and Conclusions
In summary, we have extended a previous work on incorpora-

tion of surface/interface energies in the elastic state of inclusions
to the ellipsoidal shape. In addition to the size dependency, the
present formulation, also allows the possibility of a limited inves-
tigation of shape effects in various physical problems that typi-
cally employ the inclusion solution. Exact solution does not ap-
pear to be feasible for the problem addressed in this work and
hence an approximate solution was constructed using the tensor
virial method of moments. Although we employed only first order
approximation in our numerical results, higher order approxima-
tions can be easily derived if such accuracy is required. In a sense,
the present solution now incorporates shape effects into the scal-
ing laws for inclusions that are valid at the nanoscale. In addition,
exceptionally simple expressions were derived for the pure dila-
tational problem which is relevant for several physical applica-
tions. The discarding of deformation dependent surface elasticity
prohibits use of the present results for calculations of effective
properties of composites. The present work shares with its preced-
ing companion article �8� much of the same limitations. For ex-
ample, we have presented a completely isotropic formulation
while interfacial/surface properties can be fairly anisotropic. In
addition, we have assumed a perfectly coherent interface. In deal-
ing with nano-inclusions it is important also to consider the degree
of coherency, a complete investigation of which is left for future
work.

Note added in proof. Our statement that residual stresses do not
impact effective properties is only true under specific instances,
however our statement regarding Ref. �27� stands. For further
clarification on this issue, one may consult Huang and Sun �37�.
The first author is grateful to Professor Z. P. Huang for educating
him on this.
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Appendix A: Eshelby’s Classical Tensor
In classical isotropic elasticity, the strain field for the inclusion

problem is given by �1,14�

�ij�x� =
1

8��1 − v�
��kl,klij − 2v�kk,ij − 2�1 − v���ik,kj + � jk,ki��

�A1�

Where, � and � are bi-harmonic and harmonic potentials of the
inclusion shape ���. They are given as

�ij�x� = �ij
*�

�

�x − y�d3y �A2�

�ij�x� = �ij
*�

�

1

�x − y�
d3y �A3�

Equation �A1� can then be cast into the more familiar expression

��x� = S�x�:� * x � �

�A4�
��x� = D�x�:� * x � �

Mura’s book �14� contains detailed listing of S and D tensor for
various inclusion shapes �spheres, cylinders, ellipsoids, and
cuboids�. When the eigenstrain is nonuniform, it must be brought

1A more rigorous calculation say using the multi-band k.p. method or tight bind-
ing approach is required for accurate electronic band structure calculation. For our
purposes, the approximation in Eq. �36� is sufficient to illustrate our point.

Fig. 5 Effect of shape on size-dependent principal strains of
ellipsoidal inclusion, a1=a2<a3, r=a3 /a1. „a… r=5 „b… r=2.5 „c… r
=1.5.
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into the integral in which case, Eshelby’s tensor is an integral
operator.

Appendix B: Some Identities Related to Ellipsoidal Sur-
face Integrals

In this Appendix, we derive some identities related to various
order M tensor. We simply illustrate the method by giving a deri-
vation of Mijkl which is not available in the literature �30,31�.

Consider the following lemma �30,31� for an arbitrary tensor
field A:

�
S

�A

�xl
dSi =�

S

�A

�xi
dSl �B1�

In Eq. �B1� we set A=nlxjxkxm. The left side of Eq. �B1� can then
be expanded to

�
S

�div n�xjxkxm + �njxkxm + nkxjxm + nmxjxk�dSi �B2�

The right side of Eq. �B1� is written as

�
S

�	ijxkxm + 	ikxjxm + 	imxjxk�dS �B3�

Equation �B3� can be used to derive the third order approximation
if needed.

Appendix C: Material Properties for Numerical Calcu-
lations

The numerical values used are listed in Table 1. Further infor-
mation on approximations of the interface elasticity constants is
available from Sharma and Ganti �8�. For the quantum dot prob-
lem, all the properties in Table 1 and a dilatational physical eigen-
strain corresponding to the lattice mismatch of 2% was used while
for the inclusion problem, only �M KM �o were used.
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The Importance of the
Compatibility of Nonlinear
Constitutive Theories With Their
Linear Counterparts
We show, by considering a special class of nonlinear viscoelastic materials, that consis-
tency of a mechanical model with classical linear viscoelasticity, may be a fundamental
condition to ensure a mathematical and physical well-posedness behavior. To illustrate
our arguments we use a rectilinear class of shear motions that we investigate in the static
and quasistatic case in the framework of a simple boundary value problem and the
classical recovery phenomenon. �DOI: 10.1115/1.2338053�

1 Introduction and Basic Equations
The aim of this paper is to point out the importance of the

compatibility of nonlinear theories with the classical correspond-
ing linear theories. For the sake of simplicity, we shall restrict our
attention to nonlinear incompressible elasticity and nonlinear vis-
coelasticity of differential type, but it is not hard to extend our
arguments to other �including more complex� theories.

As is conventional in continuum mechanics, the motion of a
body is described by a relation x=x�X , t�, where x denotes the
current coordinates of a point occupied by the particle of coordi-
nates X in the reference configuration at the time t. The deforma-
tion gradient F�X , t� and the spatial velocity gradient L�X , t� as-
sociated with the motion are defined as Fª�x /�X and
Lªgrad v, respectively �v=�x /�t�. The other geometrical and ki-
nematical quantities of interest are the left Cauchy-Green strain
tensor BªFFT, and the stretching tensor D= 1

2 �L+LT�. For in-
compressible materials we have that det F=1 and tr D=0, there-
fore the Cauchy stress, T, can be determined only within an arbi-
trary spherical part.

In the case of a viscoelastic material of grade 1, by definition it
must be �1� T=G�D ,B�. The more general isotropic and incom-
pressible material of grade 1 linear in D is characterized by the
constitutive equation

T = − pI + �1B + �2B−1 + �3D + �4�DB + BD� + �5�DB2 + B2D�
�1�

where the response functions �1, �2, �3, �4, �5 depend are func-
tions of the principal invariants

I1 = tr B, I2 = tr B−1

and p is the indeterminate pressure introduced by the isochoric
constraint I3�det B=1.

In the purely hyperelastic case we have �3=�4=�5=0 and
there exists a scalar function �the strain-energy� W=W�I1 , I2� such
that �1=2W1, �2=−2W2 where Wi=�W /�Ii. The constitutive
equation �1� contains the natural and direct generalization of the

classical linear Kelvin-Voigt viscoelasticity to a nonlinear setting
as it has been proposed previously by several authors �2�.

At the very least, to model real material behavior, the response
functions �i should be compatible with fairly general empirical
mechanical response results obtained from carefully controlled
large deformation tests on isotropic materials of special kinds.
This raises the related question of what reasonable restrictions on
the form of the response functions must be imposed, a delicate
and central matter sometimes refereed to as Truesdell’s Haupt-
problem in the framework of nonlinear elasticity. This problem is
intimately related with the interplay between stability, thermody-
namics, and the mathematical conditions that guarantee existence
and uniqueness of solutions in nonlinear elasticity.

In nonlinear elasticity experimental data appear to support the
following empirical inequalities:

�1 � 0, �2 � 0 �2�

In fact, a variety of tests by Rivlin and Saunders, Treloar, and
others on incompressible rubber-like materials support these in-
equalities �2�.

The inequalities �2� are not a definitive solution to the Trues-
dell’s Hauptproblem. It is only known that empirical inequalities
are useful in some physical situations, because they reflect the
intuitive and expected behavior of materials. Other requirements
on the response coefficients may come from the questions of ex-
istence and uniqueness of the solution. It should be recognized,
however, that the classical Hadamard notion �3�, commonly used
in linear theories, of well-posedness is too restrictive and in the
nonlinear theories of materials it is very hard to justify fundamen-
tal restrictions on the constitutive functions besides those arising
from material symmetry and frame indifference. On the other
hand numerical methods �as for example the one used in commer-
cial FEM softwares� require some regularity and stability results
to ensure stability, robustness, and reliability.

It is well known that for a linear, incompressible, isotropic ma-
terial there is only one independent elastic constant: the infinitesi-
mal shear modulus denoted �. The connection between the de-
rivatives of the strain energy density W�I1 , I2� and this constant is
given by the relation

W1 + W2 = �/2 �3�

where the partial derivatives with respect to the invariants are
evaluated for I1= I2=3 �i.e., in the unstressed configuration�.

In this paper we say that a given strain energy W* is compatible
with the linear theory if it satisfies the condition

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received October 13, 2005; final manu-
script received May 24, 2006. Review conducted by E. M. Arruda. Discussion on the
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of
Applied Mechanics, Department of Mechanical and Environmental Engineering,
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be
accepted until four months after final publication in the paper itself in the ASME
JOURNAL OF APPLIED MECHANICS.

Journal of Applied Mechanics MAY 2007, Vol. 74 / 455Copyright © 2007 by ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0 � �W1
* + W2

*��I1=I2=3 � � �4�

so that the corresponding infinitesimal shear modulus is finite,
nonzero, and positive.

Compatibility of nonlinear elasticity is �in part� contained in the
first of the empirical inequalities �2� that requires W1�0 for all
deformations, but it is not common to find this requirement clearly
stated in the literature. For example, this is not included in the list
of desiderata in the book of Antman �4� �Chap. XIII, Sec. 2�. The
reason for this situation is that in many of the usual requirements
the compatibility with the linear theory is implicit. To the best of
our knowledge, one of the few authors in the framework of the
nonlinear elasticity who is usually careful to ensure compatibility
with the linear limit of the models he introduces is Ogden.

The aim of the present note is to show by an explicit and simple
example the consequences of using models that contradict �4� and
to extend in a suitable way the definition of compatibility with the
linear theory to the framework of a nonlinear viscoelastic theory.
It is possible that our discussion will be considered pleonastic by
readers with a sophisticated background, but recently in the bio-
mechanical literature several models not compatible with the lin-
ear theory have been proposed. This is the case of the constitutive
model for arterial wall mechanics given by Takamizawa and Ha-
yashi �5�, where instead of B as a measure of strain, the authors
use the Green-Lagrange strain tensor E= �C−I� /2 where C
=FTF and the strain energy is given as

W = − c ln�1 − Q� �5�

with

Q = 1
2c1ERR

2 + 1
2c2E��

2 + 1
2c3EZZ

2 + c4ERRE�� + c5E��EZZ

+ c6EZZERR �6�

Here c is a material parameter with the dimension of stress, ci
�i=1, . . . ,6� are nondimensional material parameters and ERR,
E��, EZZ are the components of E in the radial, circumferential,
and axial directions respectively. In the isotropic limit Horgan and
Saccomandi �6� have shown that this model is equivalent to

WTH = − c ln�1 −
�I1 − 3�2

Jm
2 � �7�

where Jm is the limiting chain parameter. It is very simple to
check that for �7� we have

�W1
TH + W2

TH��I1=I2=3 = 0

i.e., the infinitesimal shear modulus associated with �7� is null.
It seems that although the check of the compatibility with the

linear theory is not formalized in a explicit way by some authors,
it is clearly done in several papers. In a recent study by Gasser,
Ogden, and Holzapfel �7� the authors derive an anisotropic model,
always to be applied in arterial wall mechanics, able to take into
account the distributed collagen fiber orientations. In the case of
an isotropic distribution it has been shown that the general aniso-
tropic model reduces to

WGOH =
k1

2k2
	exp� k2

9
�I1 − 3�2� − 1
 �8�

which is similar to the Fung-Demiray equation but it depends on
�I1−3�2 and not on �I1−3�. Also in this case is very simple to
check that for �8� we have

�W1
GOH + W2

GOH��I1=I2=3 = 0

and the infinitesimal shear modulus associated with this model is
null. For this reason in Gasser, Ogden and Holzapfel �7� a classi-
cal neo-Hookean term that ensures the compatibility with linear
elasticity is added to the strain energy �8�.

Similar problems may be found also in the case of viscoelastic
models. For example, to describe the constitutive law for liga-
ments and tendons the following nonlinear viscosity function has
been proposed �8�

�3 = ��I1 − 3�n �9�

where � is a positive constant and n�0. It is clear that in the
linear limit the viscosity function �9� is null for n�0.

The plan of the paper is the following. In the next section we
shall study �1� in the static and quasi-static case when a rectilinear
shear motion or deformation is considered. We shall show that in
considering such problems is possible to point out in a simple and
rigorous way what kind of problems we encounter when the non-
linear theory is not compatible with the linear counterpart. Section
3 is then devoted to specific examples where exact solutions are
considered. In the first example, we show that for an elastic ma-
terial such that the infinitesimal shear modulus is zero a singular-
ity develops in the second derivative of the deformation. In the
second example, we show that for elastic materials such that the
infinitesimal shear modulus is infinite we have nonexistence re-
sults. In the third example, we show that for viscoelastic materials
with a zero viscosity parameter in the linear limit the classical
recovery problem is not well posed. We make concluding remarks
in Sec. 4; in particular, we recall past results and comment them in
the light of our present finding.

2 Rectilinear Shear Motions
In the following, we shall consider the propagation of a single

shear wave

x1 = X1, x2 = X2, x3 = X3 + f�X1,t� �10�
or the static version of �10�, i.e., a rectilinear shear deformation

x1 = X1, x2 = X2, x3 = X3 + f�X1� �11�
The class of motions �10� and the corresponding class of static

deformations �11� are not universal, in the sense that they are not
the same solution of the balance equation in absence of body
forces for all the materials in the constitutive class �1�. On the
other hand, it is remarkable to note that for every material in the
constitutive class �1�, under reasonable and general mathematical
assumptions on the response functions, we expect that there is at
least one choice of f such that the balance equations in absence of
body forces are satisfied.

Only when we consider simple shear, i.e., f =KX1 where K is an
arbitrary constant, we obtain an universal deformation and when
f =K�t�X1 where K�t� is an arbitrary function of time, we obtain an
universal motion but in the quasistatic approximation of the equa-
tions of motion �i.e., neglecting the inertia terms�.

2.1 Static Deformation. When we consider �11� and we in-
troduce for the amount of shear the classical notation

k =
df

dX1
�12�

the balance equations, div T=0, noting that in this case D�0,
reduce to the following system of three scalar equations:

�p

�x1
=

�

�x1
�2W1 + 2�1 + k2�W2�,

�p

�x2
= 0,

�p

�x3
=

�

�x1
�2�W1 + W2�k� �13�

From the usual compatibility conditions for the existence of a
pressure field, we obtain that it must be

p�x1,x3� = �2W1 + 2�1 + k2�W2� + 	x3 �14�

and therefore from �13�3 the determining equation for the rectilin-
ear shear displacement f�X1� is given by
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d�2�W1 + W2�k�
dX1

= 	 �15�

Here 	 it is the constant gradient of pressure in the x3-direction.
Usually in �15�, the quantity

M�k� = 2�W1 + W2�

denoting the secant modulus of shear or the generalized shear
modulus, is assumed to be positive for all k
0 in view of �2�.
Here, we are interested in replacing this last condition by the
weaker requirement M�k��0 for all k�0 and to examine some of
the consequences of this assumption.

To illustrate our ideas, we shall consider a specific boundary
value problem �BVP� with Dirichlet boundary conditions. To this
end let us consider a slab bonded at both X1=0 and X1=H to rigid
surfaces and with infinite dimensions along the directions X2 and
X3. We suppose that the deformation of the slab is due to the
existence of a pressure gradient generated by applied traction at
X3= ±� and for this reason 	 must be different from zero. In this
framework, the appropriate boundary conditions are

f�0� = 0, f�H� = 0 �16�

Let X=X1 /H, f̄ = f /H, W̄=W / �̃, and k̄= �df̄ /dX�. Integration of
�15� enables the BVP to be rewritten as

M̄�k̄� df̄
dX = 	H

�̃
�X + C1�

f̄�0� = 0, f̄�1� = 0 �17�

In the above equations �̃ is a constant with the dimensions of the
shear modulus. When the infinitesimal shear modulus is defined is
obvious to consider �̃�� but here we are interested in situations
where this may not be the case �for the sake of simplicity of
notation, we drop the bar henceforth�.

The two point BVP �17� was introduced by Zhang and Rajago-
pal �9� and it is quite interesting because it enjoys a special in-
variance, as was noted by Pucci and Saccomandi �10�. Indeed,
under our hypothesis we have that df�X� /dX is zero in �0,1� only
for X=−C1. If we are searching for a continuous solution of our
BVP this means that −C1� �0,1�. We recall that M�k� is an even
function around X=−C1 and by squaring �17� we see that
�df�X� /dX�2 is also an even function. This means that df�X� /dX is
odd and f�X� must be even. Therefore, C1=−1/2.

The possibility to fix a priori C1 allows the original BVP to be
translated into a standard initial value problem �IVP�. To this end,
let us consider, the equation given by

�M�k�k�X=0 = −
	H

2�
�18�

and let us cast this equation in terms of the unknown �df /dX��x=0.
When at least a solution, say �, of �18� exists then by solving the
IVP

�M + 2
dM

dk
� df

dX
�2� d2f

dX2 =
	H

�

f�0� = 0, 
� df

dX
�


X=0
= � �19�

for all points in the range �0,1 /2� we obtain the solution of the
BVP �17�. �The solution in the range �1/2 ,1� is then obtained by
symmetry.� This happenstance means not only that we have more
powerful numerical methods at our disposal for solving �17� but
also that when it is possible to rewrite Eq. �19� in normal form we
may use the standard theorem of Cauchy to prove uniqueness and

existence of our original BVP.
To summarize, to have existence and uniqueness of the IVP

�19� and therefore of the BVP �17� when M�k� is a continuous
function of its argument k we must have that:

• the function M�k�k is monotone �to ensure the unique-
ness of ��,

• the limk→±�M�k�k=� �to ensure the existence of ��, and
• the function �M +2�dM /dk�k2�−1 satisfy the usual re-

quirements of the classical Cauchy theorem �continuity
to ensure existence and Lipschitzianity to ensure
uniqueness�.

It is clear that if M�0�=0 when k=0 we have that the above last
condition is contradicted and indeed Eq. �19�1 cannot be recast in
normal form. This is exactly what happens for X=1/2 if the
model we are considering it is not well defined in the linear limit.
On the other hand, if we have limk→0M�k�=� also in this case Eq.
�19�1 is problematic.

The deformation we are considering tell us that when the solu-
tion of a BVP contains a neighborhood in which shear vanishes,
because the linearized limit applies, difficulties can arise when the
linearized limit is not physically meaningful.

We emphasize that here we are considering a BVP which for
the invariance property is easily handled, and in many situations
we are able to find exact solutions to �17�. When we are consid-
ering more complex BVP it is necessary to consider numerical
methods such as the shooting method or approximate methods
such as the Picard’s iterations �11�. In this case we have continu-
ous dependence on initial conditions and parameters are forthcom-
ing. This kind of result, in the standard formulation, needs not
only that the function �M +2�dM /dk�k2�−1 is continuous and sat-
isfies the Lipschitz condition in the appropriate domain, but that
this functions is bounded for all values of its argument.

2.2 Quasistatic Motion. For the case of nonlinear viscoelas-
ticity we have to consider that the motion �10� and the amount of
shear are therefore also a function of time, i.e., k=k�X1 , t�. In this
case

�Dij� =
1

2�0 0 kt

0 0 0

kt 0 0
� �20�

and the equation of motion, div T=���2x /�t2�, reduces to the
three scalar equations

px1
= ��1 + �2 + �2k2 + ���4 + 2�5�k + �5k3�kt�x1

px2
= 0 �21�

and

�f tt = − px3
+

dT13

dx1
�22�

where the subscripts signify partial derivatives. Then, by a simple
computation, we check that

T13 = ��1 − �2�k + ���3 + �4 + �5� + 1
2 ��4 + 4�5�k2 + 1

2�5k4�kt

�23�
From the Eqs. �21� and �22� we deduce that

p�x1,x3,t� = �1 + �2 + �2k2 + ��4 + 2�5�ktk + �5ktk
3 + h1�t�x3

+ h0�t� �24�

where h1�t� and h2�t� are arbitrary functions of time.
From the right hand side �rhs� of �22� it is clear that the require-

ment that a model must be compatible with the linear theory of
viscoelasticity implies ��1−�2��k=0�0, as in the previous section,
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and that the infinitesimal viscosity defined as ��3+�4+�5�k=0
must be such that

0 � ��3 + �4 + �5�k=0 � � �25�
To clarify the importance of the requirement �25� we shall in-

vestigate the usual quasi-static recovery phenomena associated
with the class of motion �10� with the inertial terms neglected. In
this case, we assume that

f�X1,t� = K�t�X1 �26�

and we investigate the decay process characterized by the decreas-
ing shear displacement K�t� from an arbitrary initial shear K0 at
which load is suddenly removed. What is expected is that starting
from K�0�=K0 we obtain K�t�→0 as t→�. Because, in this case
the shear stress is �23� the shear displacement in the recovery
problem is obtained by solving the following first-order ordinary
differential equation

��1 − �2�k + ���3 + �4 + �5� + 1
2 ��4 + 4�5�k2 + 1

2�5k4�kt = 0

�27�

noting that from �26� we have k=K�t�. This is in separable form
and may be reduced to quadrature as

� ��3 + �4 + �5� + 1
2 ��4 + 4�5�k2 + 1

2�5k4

��1 − �2�k
dk = − t + constant

�28�

In �28� the arbitrary constant in the rhs is used to fix the initial
condition and we therefore have to check directly that the
asymptotic value for t→�, corresponds to our physical expecta-
tions for the solution defined in �28�. Since ��1−�2��k=0�0 and
the various constitutive functions are very regular �we may sup-
pose analytical functions� a necessary and sufficient condition for
k�t� defined by �28� to go to zero in an infinite time is given by the
condition that 
�0��0 where the function 
=
�k� is defined by


�k� = ��3 + �4 + �5� + 1
2 ��4 + 4�5�k2 + 1

2�5k4 �29�

and clearly this condition requires ��3+�4+�5�k=0�0.
When 
�0��0 the integral on the left hand side �lhs� of �28� is

a generalized integral which does not converge and therefore the
value k=0 will be reached in an infinite time as it is desired. If

�0�=0, then under the assumption of analyticity of 
�k�, a stan-
dard theorem of basic real analysis ensures that 
�k�=kn��k�
where n is the multiplicity of the root k=0 and ��k��0. This
means that the integral on the lhs of �29� is no longer a general-
ized integral and there is a finite value t= t* such that k�t*�=0, and
for t� t* the behavior of the shear deformation will be in any case
unphysical.

Another interesting result is

lim
k→0


�k� = � �30�

then, from �28�, it follows that a singularity for the amount of
shear will develop in finite time.

3 Examples

3.1 Development of Singularities. The first example in-
volves the strain energy

W�1� =
�

4
�I1 − 3�2 �31�

where � is a parameter, not to be identified with the infinitesimal
shear modulus, which in this case is null. The BVP �17� may be
recast in the dimensionless form as

� df

dX
�3

= ± �2�X −
1

2
�, f�0� = 0, f�1� = 0 �32�

where � is a number associated with the pressure gradient �we
assume ��0�. Now, when we select the—sign on the rhs of �32�
we obtain

df

dX
=	�3 �2� 1

2 − x� for 0 � x � 1/2

− �3 �2�x − 1
2� for 1/2 � x � 1

�33�

and when we select the + sign the result is

df

dX
=	− �3 �2� 1

2 − x� for 0 � x � 1/2

�3 �2�x − 1
2� for 1/2 � x � 1

�34�

In the following we shall consider only the case �34�. The exact
solution of �34� is given by a direct integration as

f�X� = −
3

4�2	�3 ��2�x −
1

2
��4

−�3 ��2

2
�4
 �35�

On the other hand we remark that


� df

dX
�


X=0
= −�3 �2

2
�36�

and therefore the IVP corresponding to the BVP under scrutiny is
obtained directly from �32� as

d2f

dX2 = −
�2

3�df/dX�2 , f�0� = 0, 
� df

dX
�


X=0
= −�3 �2

2

�37�

In Fig. 1 we have plotted this exact solution for �=1. The
solution is symmetric with respect X=1/2, the first derivative of
the solution develops in X=1/2 a vertical tangent and for this
reason in this point, the second derivative blows up. This is a
major problem when we try to solve the BVP numerically, both
transforming it to an IVP or using numerical methods suitable for
the two point BVPs as shooting methods.

Moreover, also from the physical point of view in X=1/2, we
have to record a strong localization of strain that needs some
mechanical interpretation that in materials as soft tissues and elas-
tomers seems to be artificial. It is clear that the level of regularity
of the solutions is in any case a matter that needs some mechani-
cal interpretation, but the singularity here displayed may be very
problematic when we cannot locate it a priori as in our special
example. A similar problem where it is not possible to locate the
singularity a priori �because no invariance results is obtainable� is
discussed in Horgan and co-workers �12�. This example also clari-
fies the problems we have from a mathematical point of view in
dealing with models �7� and �8�.

3.2 Nonexistence. Let us now consider the strain energy

Fig. 1 Solution „35… for typical values of the parameters
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W�2� = �n�I1 − 3�1/n �38�

where n�1 and again � is a parameter not to be confused with
the infinitesimal shear modulus since

M�k� = �k2�1−n�/n �39�
and therefore the infinite shear modulus is infinite. The BVP �17�
may be recast in dimensionless from as

� df

dX
��2−n�/n

= �̃�X −
1

2
�, f�0� = 0, f�1� = 0 �40�

where �̃ is a constant related to the pressure gradient. It is clear
that in this case the solution of �40� is very problematic. For n
=2 clearly, at first sight, no solution exists. For n=4 we have that
also in this case we cannot have existence because form

� df

dX
�−1/2

= �̃�X −
1

2
� �41�

it is clear that for X�1/2 we have this equation has no meaning
in the real domain. When we consider the second order equation
corresponding to �41�

−
1

2�df/dX�3/2

d2f

dX2 = �̃

an equation that cannot be recast in normal form. Indeed, if we
consider

d2f

dX2 = − 2�̃�df/dX�3/2

this admits the spurious solution f�X��0.

3.3 A Recovery Problem. An example suitable for illustrat-
ing the quasistatic motion result is obtained considering a vis-
coelastic media with linear elastic generalized shear modulus, say
�, with the remaining response coefficients chosen so that �4
=�5=0 and

�3 = �0 + �1k2 �42�

In this case we have that �28� is given by �here �i=�i /�, for i
=0,1�

� �0 + �1k2

k
dk = − t + constant �43�

and by considering k̄=k /K0 �and dropping the bar� we obtain

k2 +
�0

K0�1
ln k = −

t

K0�1
+ 1 �44�

In Fig. 2 we show the shear functions defined in �44� by con-
sidering the case �0=0 and the case �0=2 �here K0�1=1�. When

there is no compatibility with the linear theory we see that we
have recovery in a finite time. In our example this is not a truly
dramatic behavior because the amount of shear does not become
negative or does not start to increase again after the recovery time,
but in any case it is not what we expect from a model of differ-
ential type. More exotic behaviors may be obtained considering
when

�3 = �k2n �45�

with 0�n�1. In this case

k�t� = �K0
n − 2n�t�1/2n �46�

with �=� /�. It is clear from �46� that when, for example, n
=1/2 the shear starts to increase again after the recovery time, and
for n=2/3 it becomes negative after the recovery time.

Now let us consider

�3 =
�0

k
�47�

considering to the case �30�. Then,

� �0

�k2dk = t + constant �48�

and by considering �=�t / ��0K0�, we obtain

1

k
= 1 − �t �49�

and as it easy to check that this leads to an unacceptable singu-
larity for finite time.

4 Concluding Remarks
We have shown for the model �1� the importance of compat-

ibility with classical linear elasticity and viscoelasticity in the
sense explained in the preceding sections. For the sake of simplic-
ity we have chosen to consider an elementary framework to
present our remarks, but it is clear that these considerations, may
be extended to more general models and more complex deforma-
tions and motions.

For example if we consider a generalized neo-Hookean elastic
material for which W=W�I1� and the antiplane shear deformations

x1 = X1, x2 = X2, x3 = X3 + u�X1,X2� �50�

it is well known that in this case the determining equation for the
shear displacement u�X1 ,X2� is the quasi-linear partial differential
equation

�M�k�u,��,� = 	 �51�

where 	 is a constant and

M�k� = 2W1 = 
 �W

�I1



I1=3+k2
�52�

where

k2 = ��u�2 �53�

Such equations have been studied by Serrin �13�. Now if M�k�
�0 for all k�0, we have that equation �51� is elliptic, but to
ensure existence and uniqueness of the solution we need uniform
ellipticity and this is possible only if M�k��0 for all k
0.

On the other hand, if we consider the dynamical equation �22�
when the inertia terms are not neglected we have that the exis-
tence and uniqueness theorem has been provided by MacCamy
�14�. In this paper it is essential to the result of global existence
that the condition ��3+�4+�5�k=0�0 is satisfied otherwise it is
not possible to ensure global existence of the solution. We note
that the McCamy condition seems to be quite sharp because also

Fig. 2 Recovery shear as in „44… in the case �0=0 and �0Å0
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in recent works on the argument you will find that the compatibil-
ity with linear theory cannot be avoided to find a well-posed
mathematical problem �15�.

As we have already declared, the problem of the level of regu-
larity of the solutions depends on the mathematical setting. For
example, when we are considering phase transitions we have to
search for solutions in a weaker class than usual. On the other
hand, existence of solution in classical nonlinear elasticity for
Dirichlet boundary value problems �see for example Ciarlet �16�
Sec. 6.4� are derived in the Sobolev space W2,p. This means that in
this setting the compatibility with the linear elasticity is certainly
needed. Our example shows that when this compatibility is missed
the second derivative of the solution is not continuous. On the
other hand, when we consider existence theorems based on the
powerful methods of the calculus of variations the existence of
minimizers is established in relative coarse spaces and it is not
always a simple matter to know when the minimizers are smooth
enough to qualify as classical or weak solutions of the BVP of
interest.

In any case compatibility with the corresponding linear theory
for a nonlinear model is so important in its mathematical and
mechanical implications that we think it is worth checking this
property explicitly and directly. At least when we are considering
classical solutions as is usual in the framework of many applica-
tions where, for example, practical methods of computational me-
chanics as nonlinear finite element methods based on the tangent
modulus idea �17� are used. In this framework the noncompatibil-
ity may deliver us unpleasant surprises as becomes clear if we
consider the definition of the initial tangent modulus.
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Single Degree of Freedom Model
for Thermoelastic Damping
Finding the thermoelastic damping in a vibrating body, for the most general case, in-
volves the simultaneous solving of the three equations for displacements and one equa-
tion for temperature (called the heat equation). Since these are a set of coupled nonlinear
partial differential equations there is considerable difficulty in solving them, especially
for finite geometries. This paper presents a single degree of freedom (SDOF) model that
explores the possibility of estimating thermoelastic damping in a body, vibrating in a
particular mode, using only its geometry and material properties, without solving the
heat equation. In doing so, the model incorporates the notion of “modal temperatures,”
akin to modal displacements and modal frequencies. The procedure for deriving the
equations that determine the thermoelastic damping for an arbitrary system, based on the
model, is presented. The procedure is implemented for the specific case of a rectangular
cantilever beam vibrating in its first mode and the resulting equations solved to obtain
the damping behavior. The damping characteristics obtained for the rectangular cantile-
ver beam, using the model, is compared with results previously published in the litera-
ture. The results show good qualitative agreement with Zener’s well known approxima-
tion. The good qualitative agreement between the predictions of the model and Zener’s
approximation suggests that the model captures the essence of thermoelastic damping in
vibrating bodies. The ability of this model to provide a good qualitative picture of ther-
moelastic damping suggests that other forms of dissipation might also be amenable for
description using such simple models. �DOI: 10.1115/1.2338054�

1 Introduction
In most solids, the strain and temperature fields are coupled.

When temperature is changed, volume changes, when volume is
changed by elastic deformation, temperature changes. The con-
stant that relates the change of length �strain� with the change in
temperature of a material is its thermal expansion coefficient �.
When a body is elastically deformed �with volume change�, thus
increasing its potential energy, and is allowed to oscillate freely,
the body gradually loses its potential energy and returns to its
stable equilibrium even if it does not exchange energy with the
environment, for example, by air drag or friction. One fundamen-
tal mechanism responsible for this dissipation is known as ther-
moelastic damping, wherein potential energy is converted to heat.
If the body is thermally isolated from its surroundings thermoelas-
tic damping leads to an increase in its temperature.

Thermoelastic damping can be understood from two different,
but equivalent standpoints. One method is to view it as a process
of dissipation of mechanical energy. In general, the stress field in
a vibrating body is nonuniform and hence some regions become
hotter relative to others due to thermoelastic coupling. This results
in heat flow within the body, if it has finite thermal conductivity,
k. Due to this heat flow, the temperature field created by ther-
moelastic effect in a vibrating body becomes out of phase with the
stress field. Thus the temperature induced strain field is out of
phase with the stress field. This phase difference between stress
and strain fields leads to dissipation of mechanical energy. If k is
zero, the stress and temperature fields are always in phase and
hence no dissipation takes place. If k is very large, the body re-
mains isothermal and again there is no dissipation. The second

way is to visualize thermoelastic damping is in terms of genera-
tion of entropy. Due to inhomogeneities in the stress field, local
temperature gradients are created in the body. This leads to irre-
versible heat flow until the temperature, T, becomes uniform
throughout the body, i.e., the attainment of thermal equilibrium.
Since thermal equilibrium corresponds to the state of maximum
entropy, there has to be a net increase in the entropy, S, of the
body during this process. This increase in entropy has to come at
the cost of the potential �strain�/kinetic energy of the system, since
the total energy, U, of the system remains constant. The entropy
increase can also be considered as an increase in heat content of
the body.

The thermoelastic damping in a vibrating body can be obtained,
for the most general case, by simultaneously solving the three
equations for displacements and one equation for temperature �the
heat equation� which comprise the equations of thermoelasticty
�1�. Since these are a set of coupled nonlinear partial differential
equations there is considerable difficulty in solving them, espe-
cially for finite geometries. Over the years, analytical solutions to
thermoelastic damping have been obtained for certain simple ge-
ometries. Zener first studied thermoelastic relaxation as a source
of damping in mechanical systems using the “standard model” of
an anelastic solid �2� and developed a general theory of ther-
moelastic damping in a series of papers �3–5� in the 1930s. He
showed that the damping behavior of transversely vibrating can-
tilever beam can be well approximated by a single relaxation peak
with a characteristic relaxation time �. He further showed that �,
which gives a measure of the time needed for temperature equal-
ization through diffusion, is proportional to b2 /�, where b is the
thickness of the beam and � is the thermal diffusivity.

Alblas �6� developed a generalised theory for thermoelastic dis-
sipation in vibrating bodies using the three dimensional ther-
moelastic equations and derived the solution for the coupled ther-
moelastic equations in terms of normalized orthogonal eigen
functions. In a later publication �7�, Alblas generalized the results
and obtained explicit expressions for thermoelastic damping in
vibrating elastic beams, including the circular rod and the rectan-
gular beam. Chadwick �8� derived the coupled equations govern-
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ing the thermoelastic behavior of thin plates and beams, and dem-
onstrated that these reduce to the classical equation of motion and
of heat conduction in the limit of zero coupling. Lord and Shul-
man �9� derived a generalized theory of thermoelasticity by con-
sidering a modified form of the Fourier heat conduction equation
that took into account the time lag needed to establish steady state
conduction.

In recent times, there has been renewed interest in thermoelastic
damping, especially due to its contribution to energy dissipation in
micromechanical resonators. High frequency micromechanical
resonators, with potential applications as RF filters �10�, charge
detectors �11�, and sensors �12,13�, need to have very little energy
dissipation or very high quality factor, Q. Since thermoelastic
damping is a fundamental damping mechanism, it imposes an
upper limit on the quality factor that can be obtained in any os-
cillator. Lifshitz et al. �14� evaluated the importance of ther-
moelastic damping at micro and nano scales and concluded that it
remains relevant at these scales. Further, they derived an exact
expression for thermoelastic damping in thin rectangular beams
which compared favorably with Zener’s well known approxima-
tion �2�. Photiadis et al. �15� proposed a simple model of ther-
moelastic dissipation assuming that the energy loss occurred only
due to dissipation of the flexural component of motion. Houston
et al. �16,17� used this model to predict thermoelastic dissipation
in a single-crystal double paddle oscillator and found that the
predictions agreed well with experimental observations at high
temperatures �above 150 K�. Nayfeh et al. �18� derived analytical
expressions for quality factors in microplates, using perturbation
method, by decoupling the heat equation from the equation of
motion. In a recent work, Norris et al. �19� presented a general
method of calculating thermoelastic damping in vibrating elastic
solids, by treating elasticity as an uncoupled forcing term in the
heat equation. Using this method the authors obtained a new equa-
tion of motion for flexural vibration of thin plates incorporating a
thermoelastic damping term.

As mentioned earlier, the difficulty in solving thermoelastic
equations, and hence finding the damping, arises because of the
need to solve the displacements and heat equation simultaneously.
In this paper, we explore the possibility whether thermoelastic
damping in a vibrating body can be estimated based on its mate-
rial properties and geometry only and without solving the heat
equation. Towards the end, we introduce the notion of a modal
temperature, similar to modal displacements that are often used to
study vibrations of continuous systems. The rationale for introduc-
ing a modal temperature is as follows. The local strain and its rate
of change, in the presence of thermoelastic coupling, determine
the local temperature gradients and the rate of temperature
change. Since the strain field and its rate of change can be cap-
tured using a modal displacement and the corresponding modal
frequency, it might be possible to find a modal temperature that
describes the temperature field in the body. This model assumes
no heat flow in or out of the body and that the thermal gradients
created by the strain field in one direction are much larger com-
pared to the other two. While these assumptions may seem quite
restrictive, most practical structures used in micromechanical thin
beams and plates obey these assumptions �14,18�.

In Sec. 2, we outline a simple spring-mass model for ther-
moelastic damping, and show that it exhibits damping character-
istics similar to those observed in real systems. We then describe
a more generalized SDOF model for thermoelastic damping and
outline a procedure to derive its governing equations in Sec. 3. In
Sec. 4 we use this model to find the thermoelastic damping in a
vibrating cantilever beam. In Sec. 5 we compare the results ob-
tained from the model with those previously obtained in the lit-
erature and discuss the reasons for differences between them. In
the final section we discuss as to how this SDOF model can be
adapted to other geometries and potentially to model other forms
of dissipation.

2 Idealized Spring-Mass Model for Thermoelasticity
The spring-mass model �Fig. 1� comprises of a single mass M

attached to two identical springs. The springs, labeled S1 and S2,
are attached to rigid supports at their other ends. The springs are
simply two elastic bars of length L, with elastic modulus E and
cross-sectional area A and hence are of stiffness K=AE /L. The
supports are assumed to be nonconducting and there is no heat
transfer from the springs to the surroundings and vice versa. The
springs are assumed to have very large thermal conductivity due
to which the temperature within them is uniform at all times. In all
the analyses below, the following initial conditions are imposed,
i.e., at t=0:

�1� The displacement, u, of the mass satisfies, u�0�=u0 and
�du /dt�t=0=0;

�2� the entire system is at a uniform temperature T0.

2.1 Spring-Mass Model with Nonconducting Mass. When
the mass is displaced by a distance u �u�L�, the strain in S1, �1,
is −u /L, and the strain in S2, �2, is u /L. These strains induce a
change in the temperature of the two springs because of ther-
moelastic coupling. It is assumed that the strains are uniform in
each of the springs and that there is no thermal contact between
the two springs, i.e., the mass M has zero thermal conductivity.

The generalized heat equation in the presence of thermoelastic
coupling for an isotropic solid is given by �20�

�T

�t
=

k

�cv
�2T −

E�T

�1 − 2���cv

�

�t � �kk �1�

where k is the thermal conductivity, � is the density, cv is the
specific heat capacity at constant volume, E is the Young’s modu-
lus, � is the linear thermal expansion coefficient, � is the Pois-
son’s ratio, and �kk are the normal components of strain.

When a body is subject to uniaxial stress ��xx�, the equation
reduces to

�T

�t
=

k

�cv
�2T −

E�T

�cv

��xx

�t
�2�

If the thermal conductivity, k, is zero, the equation further reduces
to

�T

�t
= −

E�T

�cv

��

�t
�3�

Here, �xx has been replaced by �. Equation �3� can be viewed as a
relation connecting heat generation �or absorption� rate with the
strain rate for the case of uniaxial stress.

If the strain � has no spatial variation, as is assumed for the
springs in the spring-mass model, the partial time derivatives in
Eq. �3�, can be replaced by total derivatives. Hence Eq. �3� re-
duces to

Fig. 1 Schematic of spring-mass model for thermoelasticity
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dT

dt
= −

E�T

�cv

d�

dt
�4�

Since the change in temperature due to thermoelastic effect is very
small compared to the initial temperature T0, T on the right hand
side of Eq. �4� can be replaced by T0. Integrating Eq. �4�, after this
modification, we get

	 = −
E�T0

�cv
� + N �5�

where 	=T−T0, is the change in temperature from the initial tem-
perature T0 at the current strain �, N= �E�T0 /�cv��0 is the con-
stant of integration and �0 is the strain at t=0.

When S1 is subjected to a strain −u /L, its temperature increases
by 	1=E�T0u /�cvL+N1. Due to thermal expansion, the length of
the spring increases by 
L1=�	1L=E�2T0u /�cv+�N1L. In ef-
fect, the net compression experienced by S1 is u�1+E�2T0 /�cv�
+�N1L. Hence, the force exerted by S1 on the mass M is given by
F1=−K�u�1+E�2T0 /�cv�+�N1L�. Similarly, the force exerted by
S2 is F2=−K�u�1+E�2T0 /�cv�−�N2L�. The initial conditions,
	1=	2=0 and u=u0 at t=0 can be used to find N1 and N2.

Hence, the equation of motion of the spring-mass system is
given by

M
d2u

dt2 + 2K�1 +
E�2T0

�cv
�u + K��N1L − �N2L� = 0 �6�

which is of the form

a�
d2u

dt2 + b�u + c� = 0 �7�

and has the general solution u=−c� /b�+ P1 cos��t�+ P2 sin��t�
where �=	b� /a�. On imposing the initial conditions the solution
reduces to u=−c� /b�+ P cos��t� where P is determined by the
condition u=u0 at t=0.

The solution to the equation of motion of the discrete spring-
mass system with zero thermal conductivity leads to the following
conclusions:

�1� The motion is harmonic with no decay in amplitude, i.e.,
with no damping, as is the case with any continuous system
that has zero thermal conductivity;

�2� the natural frequency, 	2K�1+E�2T0 /�cv� /M of the ther-
moelastically coupled system is higher than 	2K /M, the
frequency of the uncoupled system ��=0�, again a charac-
teristic of any continuous system;

�3� the point at which the mass experiences zero force is
shifted from u=0, of the uncoupled system, to u=c� /b�
�0.

2.2 Spring-Mass Model with Conducting Mass. In this
analysis, the mass M is assumed to have a finite thermal conduc-
tivity which leads to heat flow between the springs when there is
a finite temperature difference between them. The rate of heat
flow between the springs is assumed to be proportional to the
difference in temperature between the springs, i.e., q̇=kLc�T1
−T2�=kLc�	1−	2� �since T1=T0+	1 and T2=T0+	2�. Here k is
the thermal conductivity of the mass and Lc is a parameter that
determines the heat transfer across it.

In a small time interval dt, let du be the displacement of the
mass and d	1 and d	2 be the change in temperature in S1 and S2
�Fig. 1�. The change in force exerted by S1 and S2 on the mass is
given by

dF1 = − K�du + L� d	1� �8�

dF2 = − K�du − L� d	2� �9�

Dividing by dt throughout, and using dF /dt=Md3u /dt3 the equa-
tion of motion of the spring-mass system becomes

M
d3u

dt3 + 2K
du

dt
+ KL��d	1

dt
−

d	2

dt
� = 0 �10�

In Eq. �10�, the masses of the springs �Ms� have been neglected
since they are very small compared to M. To obtain the expres-
sions for 	1 and 	2, the heat balance equation needs to be used. In
the absence of thermal conductivity the relation governing the rate
of temperature change as a function of the strain rate is given by
Eq. �4�. Since, in the spring-mass system K is analogous to E,
Ms /L is analogous to � and u is analogous to �, Eq. �4� for the
mass-spring system becomes

dT

dt
=

d	

dt
= −

K�LT

Mscv

du

dt
�11�

If there is heat transfer, the heat transfer rate given by q̇=kLc�	1
−	2� has to be added to Eq. �11�. Hence, the heat balance equa-
tions for S1 and S2 are given by

Mscv
d	1

dt
= K�LT1

du

dt
− kLc�	1 − 	2� �12�

Mscv
d	2

dt
= − K�LT2

du

dt
+ kLc�	1 − 	2� �13�

The first term on the RHS of these two equations can be consid-
ered as the rate at which heat is generated/absorbed due to change
in displacement with respect to time. Equation �10� along with
Eqs. �12� and �13� describe the dynamics of the spring-mass sys-
tem in the presence of thermoelastic coupling. These are a set of
nonlinear differential equations and have to be solved numerically
since there is no straightforward method for obtaining an analyti-
cal solution. But, since the change in temperatures, 	1 and 	2,
induced by thermoelastic effect is very small compared to the
initial temperature T0, we can replace T1 and T2 in the first term
on the RHS of Eqs. �12� and �13� by T0, i.e., linearize Eqs. �12�
and �13� about T0 and consider only the zeroth order term. There-
fore, we get

Mscv
d	1

dt
= − Mscv

d	2

dt
= K�LT0

du

dt
− kLc�	1 − 	2� �14�

One consequence of linearization is that there will be no net in-
crease in the temperature of the body, i.e., the net heat generated
in the body will be zero, even though there is a reduction in
potential energy. The linearized equations can easily be solved
analytically as will be shown below.

Defining a new variable 	*=	1−	2, Eqs. �10� and �14� can be
reduced to

M
d3u

dt3 + 2K
du

dt
+ KL�

d	*

dt
= 0 �15�

Mscv
d	*

dt
= 2K�LT0

du

dt
− 2kLc	

* �16�

Integrating Eq. �15� with respect to time and using the initial
condition, Md2u /dt2=−2Ku and 	*�0�=0, we get

M
d2u

dt2 + 2Ku + KL�	* = 0 �17�

Substituting for 	* in Eq. �16� from Eq. �17�, we get

G1
d3u

dt3 + G2
d2u

dt2 + G3
du

dt
+ G4u = 0 �18�

where G1=MsMcv /KL�, G2=2kLcM /KL�, G3=2�KL�T0
+Mscv /L�� and G4=4kLc /L� are positive constants. Since Eq.
�18� is a third order ordinary differential equation with constant
coefficients, we can look for solutions of the form u=Aept. Sub-
stituting this in Eq. �18�, we get

Journal of Applied Mechanics MAY 2007, Vol. 74 / 463

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



G1p3 + G2p2 + G3p + G4 = 0 �19�

If p1, p2, and p3 are the roots of Eq. �19�, the solution for u is
given by

u = U1ep1t + U2ep2t + U3ep3t �20�

where U1, U2, and U3 are determined by the initial conditions.
Since, all the coefficients in Eq. �19� are positive, p can either

be real and negative or complex with negative real part. Unless
the system is over damped, p1 and p2 will be complex with nega-
tive real parts and p3 will be real and negative. Let p1=r+ is and
p2=r− is, where r is negative and hence represents the decaying
component of the solution in steady state while s represents the
harmonic component. Since the damping due to thermoelastic ef-
fect is small, in general r will be much smaller in magnitude
compared to s. If p3 is comparable in magnitude to s, the transient
part �the third term in the RHS of Eq. �20�� goes to zero in a small
time and the system achieves steady state quickly. Using the ini-
tial conditions, u�0�=0 and u̇�0�=0 it can be shown that U1=U2
= P, where P is a constant, and hence the solution in steady state
reduces to u=2Pert cos�st�.

The parameter Lc, as mentioned earlier, determines the heat
flow in the system and hence the damping due to thermoelastic
effect. Lc=0 corresponds to the adiabatic case while Lc=� corre-
sponds to the isothermal case, both of which lead to zero damp-
ing. For any other finite value of Lc there will be finite dissipation
due to thermoelastic effect with the damping peaking at an unique
value of Lc. In effect, one needs to determine Lc for the system of
interest before the model can be used to predict its thermoelastic
behavior. The equation of motion obtained for the case of noncon-
ducting mass in the previous section can also be obtained from
Eqs. �16� and �17� by making Lc=0.

In the spring-mass model, the amplitude exhibits an exponential
decay in steady state as is expected in real systems. The model
implicitly incorporates the notion of a modal temperature as it
models the heat flow in terms of the difference of two lumped
temperatures T1 and T2 which represent two parts of the system
that have opposite states of strain. This indicates that it might be
possible to find a modal temperature for real systems.

3 Generalized Model for Thermoelastic Damping
The generalized model provides a framework for estimating the

thermoelastic damping in a thermoelastically coupled system vi-
brating in a particular mode. In estimating the damping using this
model, we make the following assumptions:

�1� The dynamics of the vibrating system can be captured by a
single modal displacement and frequency;

�2� the stress and strain fields in the system and their rate of
change, in the absence of thermoelastic coupling, are com-
pletely known for the mode of vibration we are interested
in;

�3� the stress field remains unaltered even in the presence of
thermoelastic coupling;

�4� the temperature change induced is determined by the un-
coupled strain;

�5� there is no heat flow from the surroundings to the system or
vice versa.

In effect, we try to incorporate the effect of thermoelastic coupling
by treating it as a perturbation from the uncoupled state.

To obtain the thermoelastic damping using this model we adopt
the following procedure:

�1� We partition the vibrating system into two regions, 1 and 2,
that are anti-phase with respect to strain �i.e., the strains of
these two regions are of opposite nature at all times� and
choose one point in each of these regions to be their respec-
tive “modal points;”

�2� we take the temperature changes at these modal points

�from now on referred to as “modal temperatures”� to rep-
resent the temperature fields of the two regions. This is the
crucial approximation underlying this model as it reduces
the temperature field of the distributed system to two
lumped modal temperatures.

�3� we use the heat balance for the two regions and the energy
conservation in the system to obtain the three governing
equations necessary to solve for the three independent vari-
ables, namely the two modal temperatures and the modal
displacement;

�4� finally, we use the time evolution of the modal displace-
ment, obtained by solving the governing equations, to com-
pute the damping in the system.

We will show that the damping characteristics obtained from the
model is insensitive to the choice of the modal points. In other
words, we get the same damping characteristics irrespective of
the choice of modal points as long as we follow the definitions
consistently.

3.1 Derivation of Governing Equations. We start by consid-
ering the the energy conservation equation, which for a general
system vibrating in a particular mode, in the absence of ther-
moelastic coupling, is given by

1

2
Meff�du

dt
�2

+
1

2
Keffu

2 = E0 �21�

where, Meff is the effective mass and Keff is the effective stiffness
with respect to the modal displacement, u, while E0 is the initial
energy of the system. In the presence of coupling this equation
modifies to

1

2
Meff�du

dt
�2

+
1

2
Keffu

2 −
1

2

V

�ii�	 dV + �cv

V

	 dV = E0

�22�

where 	 is the change in temperature from the initial temperature
T0 and V is the volume of the system. The third term on the LHS
of Eq. �22� accounts for the strain energy due to thermal strain
while the last term accounts for the change in heat content of the
system. Equation �22� can be expanded as

1

2
Meff�du

dt
�2

+
1

2
Keffu

2 −
1

2�

V1

�ii�	 dV +

V2

�ii�	 dV�
+ �cv�


V1

	 dV +

V2

	 dV� = E0 �23�

where V1 and V2 are the volumes of the two regions, 1 and 2, and
hence V1+V2=V.

To proceed further, we consider a mode where only one stress
component, �, contributes most of the strain energy. As we are
interested in solving for the modal displacement, u, and the modal
temperatures, 	1 and 	2, we need to formulate the governing equa-
tions in terms of u, 	1, and 	2. Towards this end, we replace the
integrals in Eq. �23� in terms of 	1, 	2 and �1, �2, the stresses at
the modal points, by defining

�cv

Vi

	 dV = Ai	i i = 1,2 �24�

1

2

Vi

��	 dV = Bi�i�	i i = 1,2 �25�

where Ai and Bi are constants. Equation �23�, hence, becomes
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1

2
Meff�du

dt
�2

+
1

2
Keffu

2 − �B1�1�	1 + B2�2�	2� + A1	1 + A2	2 = E0

�26�
Next, we consider the heat balance for the two regions represented
by 	1 and 	2. The heat balance equations, assuming that at any
time both 	1 and 	2 are much smaller than T0, will be be similar to
Eq. �14� and are given by

A1
d	1

dt
= − A2

d	2

dt
= H

du

dt
− kLc�	1 − 	2� �27�

where H is the constant relating the rate of heat generation/
absorption in the two regions to the modal displacement �strain�
rate. Equation �27� implies that the net heat generated in the sys-
tem is zero which, as mentioned earlier, is a consequence of con-
sidering the linearized heat equation. Differentiating Eq. �26� with
respect to time and noting that both �1, �2 are proportional to u,
i.e., �i=Ciu, i=1,2 �Ci are constants�, we get, using Eq. �27�

Meff�d2u

dt2 ��du

dt
� + Keffu

du

dt
− D1��du

dt
	1 +

d	1

dt
u� − D2��du

dt
	2

+
d	2

dt
u� = 0 �28�

where Di=BiCi.
Equations �27� and �28� define the dynamics of the system in

the presence of thermoelastic coupling. We can find the solution to
these equations in the steady state by assuming, u=u0ei�t and 	1
=	10ei�t, 	2=	20ei�t. In general, � will be complex with Re���
giving the new eigen frequency in the presence of thermoelastic
damping and �Im���� giving the attenuation of vibration. A mea-
sure of thermoelastic damping is then be given by �14�

Q−1 = 2� Im���
Re���

� �29�

where Q−1 is the inverse of the quality factor.
Equation �27� involves a system parameter Lc which governs

the heat flow within the system. Lc, which in general will depend
on the geometry of the system, determines the lag between the
temperature and stress fields and hence the dissipation. For certain
simple cases we can get a good estimate of Lc by considering the
heat flow in the system. But for more complicated geometries, it
might have to be deduced from experiments. In Sec. 5, we provide
an intuitive picture of Lc and outline a method for estimating it.

4 Application of Generalized Model to Vibrating Can-
tilever Beam

To estimate the thermoelastic damping in a thin cantilever beam
vibrating in its first mode using the model, we first consider the
small flexural displacements of the cantilever beam in the absence
of thermoelastic coupling. The cantilever beam is taken to be of
length L, thickness b��L� and width w��L� �Fig. 2�. The x axis is
defined to be parallel to the beam axis and y and z axes are
parallel to surfaces with dimensions b and w, respectively. Since
b�L and w�L, it can be assumed that any plane cross section,

initially perpendicular to the beam axis, remains perpendicular to
the neutral plane during bending. If the surfaces of the beam are
assumed to be stress free, only the �xx component of stress will be
present. Since b is small �thin beam� this assumption holds good
in the interior as well. Under these assumptions it can be shown
that �20�

�xx = − y
�2v
�x2 �30�

and the equation of motion is given by �20�

�A
�2v
�t2 + EI

�4v
�x4 = 0. �31�

where A=bw is the area of its cross section, I=b3w /12 is the
moment of inertia about the z axis and v�x , t� is the displacement
of the beam along y direction at time t.

If the cantilever is given an initial displacement along y direc-
tion, such that its shape matches with its first mode shape and the
tip displacement is u0, and set into vibration, v�x , t� will take the
form v�x , t�=v0�x�cos��t�, where v0�x� is the mode shape and �
is the natural frequency of the cantilever. The general solution for
v0�x� is given by

v0�x� = B�sin�qx� − sin h�qx� + R�cos�qx� − cos h�qx��� �32�

where R= �cos�qL�+cos h�qL�� / �sin�qL�−sin h�qL�� and B is de-
termined by the initial displacement u0 and is approximately equal
to u0 /2.724. Since we are considering only the first mode, q=q1
�1.875/L and R�1.362. Hence v�x , t�, for the first mode, is
given by

v�x,t� =
u0 cos��t�

2.724
�sin�q1x� − sin h�q1x� + R�cos�q1x�

− cos h�q1x��� �33�

As u0 cos��t�
u�t�, where u�t� is the displacement of the canti-
lever tip, Eq. �33� can be written as

v�x,t� =
u�t�

2.724
�sin�q1x� − sin h�q1x� + R�cos�q1x� − cos h�q1x���

�34�

We can find Meff of the cantilever with respect to u by equating
the kinetic energy of the cantilever to Meff�du /dt�2 /2. Keff can
similarly be found by equating the potential energy to Keffu

2 /2.
Meff and Keff, the modal mass and stiffness thus found, are given
by Meff�0.25M and Keff�0.2575Eb3w /L3. M =�bLw is the total
mass of the cantilever.

To proceed further, we choose the points 1 and 2, as shown in
Fig. 2, to be the modal points and designate the temperature
changes at these points, 	1 and 	2, to be the modal temperatures.
The modal points have been chosen symmetrically merely for
convenience. From Eqs. �24� and �25� we get

�cv

0

L

0

b/2

−w/2

w/2

	 dz dy dx = A1	1 �35�

�cv

0

L

−b/2

0 

−w/2

w/2

	 dz dy dx = A2	2 �36�

1

2

0

L

0

b/2

−w/2

w/2

��	 dz dy dx = B1�1�	1 �37�

Fig. 2 Schematic of cantilever beam
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1

2

0

L

−b/2

0 

−w/2

w/2

��	 dz dy dx = B2�2�	2 �38�

As H is the constant relating the rate of heat generation/absorption
in the two regions to the modal displacement rate, we have

�cv

0

L

0

b/2

−w/2

w/2
�	

�t
dz dy dx = H

du

dt
�39�

To calculate the constants Ai, Bi, and H exactly we need to know
the actual temperature profile, which can be obtained only by
solving the heat equation for the system under consideration with
appropriate boundary conditions. Since the very purpose of the
model is to get an estimate of damping without solving the heat
equation, we make the following approximation. We solve for the
temperature profile for the case of no heat flow �k→0�, so that the
temperature profile is solely determined by the strain, and use it to
determine the constants. As the stress field is also known, we can
compute the constants A1, A2, B1, B2, and H. The values of the
constants are A1=A2=0.5 �cvbLw, B1=B2=0.5445 wbL, and H
=0.172 E�T0wb2 /L.

Using the stress field, we find the constants C1 and C2 that
relate �1 and �2 with u to be C1=−C2=−0.344Eb /L2. With these
constants, together with Meff and Keff we can obtain the equations
that govern the dynamics of the cantilever in the presence of ther-
moelastic coupling from Eqs. �27� and �28�. The equations are
given by

0.5Mcv
d	1

dt
= − 0.5Mcv

d	2

dt
= 0.172

E�T0wb2

L

du

dt
− kLc�	1 − 	2�

�40�

Meff
du

dt
�d2u

dt2 � + Keffu
du

dt
+ 0.1873

E�b2w

L
�du

dt
�	1 − 	2�

+ u�d	1

dt
−

d	2

dt
�� = 0 �41�

Using 	*=	1−	2, Eqs. �40� and �41� reduce to

0.5Mcv
d	*

dt
= 0.344

E�T0wb2

L

du

dt
− 2kLc	

* �42�

Meff�d2u

dt2 ��du

dt
� + Keffu

du

dt
+ 0.1873

E�b2w

L
�	*du

dt
+ u

d	*

dt
� = 0

�43�

5 Results and Discussion
To examine the validity of the approach outlined above in mod-

eling thermoelastic dissipation in rectangular cantilever beams, we
solve Eqs. �42� and �43� and compare the results with those pre-
viously published in literature. For solving the equations we take
�=2.616
10−6 / °C, cv=713 J /KgK, k=156 W/mK, E=1.68

1011 N/m2, �=2330 Kg/m3. Assuming a steady state solution
of the form u=u0ei�t and 	*=	0

*ei�t, we can solve Eqs. �42� and
�43� for the complex valued frequency � and hence the damping.

Figure 3 gives the plots of the normalized attenuation, �
= �Im���� / ��0
E� and normalized frequency shift, �= �Re���
−�0� / ��0
E�, for a beam of dimensions L=4
10−4 m, b=4

10−5 m, and w=4
10−5 m, as a function of Lc, where 
E is the
relaxation strength �2� and �0 is the isothermal natural frequency.
The relaxation strength can be understood as follows. When a
periodic stress of frequency � is applied to a body, the stress and
strain amplitudes are related through the frequency dependent
complex elastic modulus. The dissipation in the body, Q−1, if
small, is then equal to the ratio of the imaginary and real parts of
the complex modulus giving Q−1 /
=�� / �1+�2�2�, where 
 is

the relaxation strength and � is the relaxation time. For a ther-
moelastic solid the relevant relaxation strength is that of the
Young’s modulus giving 
E= �Ead−E� /E=E�2T0 /�cv, where Ead

and E are the adiabatic and isothermal values of the Young’s
modulus.

As can be seen from Fig. 3, the frequency shift attains a maxi-
mum when Lc→0 and goes to zero as Lc becomes larger. The
damping on the other hand attains a peak for an intermediary
value of Lc and tends to zero at both the extremes. Since Lc→0
represents an adiabatic system and large values of Lc represent a
nearly isothermal system, it can be seen that the damping behavior
and frequency shift predicted by the model agrees well with re-
sults obtained by Zener �3� and Lifshitz et al. �14�.

As mentioned in Sec. 3, we need to know the Lc of a system
before we can find its thermoelastic damping. One method to get
an estimate of Lc is as follows. Since, we take the heat flow
between the two regions to be equal to kLc�	1−	2�, we have

k

S

�	

�n
dS = kLc�	1 − 	2� �44�

where S is the surface through which heat flows between the re-
gions represented by 	1 and 	2. To calculate Lc exactly from Eq.
�44� we need to know the actual temperature profile. To circum-
vent this problem we make the same approximation that we made
for evaluating the constants in Eqs. �35�–�39�, i.e., solve for the
temperature profile for the case of no heat flow �k→0� and use it
to determine Lc. For the particular case of the vibrating cantilever
that we are considering here, Eq. �44� becomes

k

0

L

−w/2

w/2 � �	

�y
�

y=0
dz dx = kLc�	1 − 	2� �45�

On solving Eq. �45� we get Lc=2Lw /b. It is worth noting that for
the simple case of cantilever beam considered here we can get an
order of magnitude of Lc based on elementary physical consider-
ations. The heat flow rate, q̇, between two bodies at temperatures
T1 and T2 is given by q̇=kA�T1−T2� /d where k is the thermal
conductivity, A is the cross sectional area, and d is the length of
the heat conduction path. A comparison with q̇=kLc�	1−	2�, used
in the model, reveals that Lc is analogous to A /d. The appropriate
area and length for the cantilever beam are A=Lw and d=b, which
gives Lc�Lw /b.

Figure 4 shows the plots of Q−1 /
E as a function of b /L, with
L=4
10−4 m and w=4
10−5 m, as obtained from the model
�solving Eqs. �42� and �43� with Lc=2Lw /b� and from Zener’s
approximation �Eq. �46��. Zener’s approximation for Q−1 is given
by

Fig. 3 Plot of normalized attenuation, �, and normalized fre-
quency shift, �, as a function of Lc
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Q−1


E
=

��

1 + �2�2 �46�

where �=b2 /�2�. Since ��b /L2, Q−1 /
E is just a function of
b3 /L2. In other words, if b3 /L2 is kept constant, the damping
remains constant. If we solve Eqs. �42� and �43� keeping b3 /L2

constant, the damping remains constant, irrespective of the value
of w. Further, if we choose Lc=2.466Lw /b, the damping predicted
by the model and Eq. �50� match exactly. These results imply that

�1� The damping predicted by the model is also just a function
of b3 /L2;

�2� the functional form of the relation between damping and
b3 /L2 predicted by the model is the same as that of Zener’s
approximation.

While the qualitative damping behavior predicted by the model
agrees well with Zener’s result, the quantitative agreement is not
exact because of the approximation involved in evaluating the
constants in Eqs. �35�–�39� as well as Lc. In estimating these
constants and Lc, we implicitly assume that the temperature dis-
tribution within the cantilever remains similar irrespective of
whether there is heat flow or not. In other words, if 	A and 	B
represent the temperature changes at two arbitrary points in steady
state, we assume 	A /	B, with heat flow �k is finite� is equal to
	A /	B when there is no heat flow �k=0�. But, solving the heat
equation explicitly gives a temperature distribution that depends
on k, as shown in for example �14�, leading to the discrepancy.
This k dependence of the temperature distribution, at first sight,
would suggest that at larger values of k, the damping characteris-
tics obtained from the model will be substantially different from
those obtained from Zener’s result. But, the closeness between the
damping characteristics obtained from the model and Zener’s re-
sult remains identical for all finite values of k. This suggests that
the degree of approximation is insensitive to the value of k, which
we think is a consequence of averaging the temperature distribu-
tion in evaluating the constants.

As mentioned earlier, the damping characteristics obtained from
the model is independent of the choice of modal points. For ex-
ample, if we choose the two modal points as the corners of the
upper and lower halves of the cantilever �points 3 and 4 in Fig. 2�,
we obtain

0.09785Mcv
d	*

dt
= 0.344

E�T0wb2

L

du

dt
− 2kLc	

* �47�

Meff�d2u

dt2 ��du

dt
� + Keffu

du

dt
+ 0.03665

E�b2w

L
�	*du

dt
+ u

d	*

dt
� = 0

�48�

where Meff and Keff are the same as in the previous case but Lc
=0.3914Lw /b instead of 2Lw /b. Solving Eqs. �47� and �48� leads

to exactly the same damping behavior as shown in Fig. 4.
The functional dependence of Lc on the dimensions �like

length, radius, width, etc.� of the vibrating system remains the
same irrespective of the size. Once this functional relationship is
known, the damping in any similar system vibrating in the same
mode can be easily obtained. This will be especially useful for
estimating thermoelastic damping in systems with complex geom-
etries, as the model requires only the knowledge of the stress field.
For example if we need to find the thermoelastic damping of
beams with U-shaped cross section vibrating in a particular mode,
we need to determine the functional relationship only once, and
we can use the model to predict the damping at all size scales.
But, when applying the model to more complex geometries two
issues need to be taken into consideration:

�1� The functional dependence of Lc on the the dimensions of
the body may not be obvious, i.e., while it was easy to see
that Lc�L, w and Lc�1/b for the rectangular cantilever
beam, such dependence may not be apparent for more com-
plex geometries;

�2� Estimating Lc by solving Eq. �44� might be more difficult.

One way to overcome these problems would be to experimentally
obtain the damping for the system of interest at various size
scales, and determine the functional dependence of Lc on the di-
mensions using it. For this method to work, though, one would
have to make sure that energy dissipation due to other causes are
minimal. A second method would be to obtain the damping at
different size scales by numerically solving the equations of ther-
moelasticity and determine the relationship between Lc and the
dimensions of the system.

The simple model described in this work essentially depends on
finding one macroscopic system parameter, Lc, to determine the
thermoelastic damping in a vibrating solid. We have shown that
this model provides a reasonably good estimate of thermoelastic
damping at least for the case of a rectangular cantilever beam.
This raises the possibility that similar macroscopic parameters and
a corresponding damping model can be used to estimate dissipa-
tion due to other relaxation processes like dislocation dynamics or
grain boundary relaxation. For example, the average grain size
might turn out to be a macroscopic parameter on which grain
boundary relaxation depends. Finding a good damping model,
though, might prove to be more difficult, as many of these relax-
ation processes, unlike thermoelastic damping, do not have a well
developed theoretical framework or governing equations.

6 Concluding Remarks
A SDOF model for estimating thermoelastic damping in struc-

tures vibrating in specific modes is proposed in this work. The
model, incorporating the notion of modal temperatures, estimates
the thermoelastic damping in a structure without explicitly solving
the heat equation. The good qualitative agreement between the
predictions of the model and Zener’s well known approximation,
for the rectangular cantilever beam, suggests that the model cap-
tures the essence of thermoelastic damping in vibrating bodies.
The model can be used to estimate thermoelastic damping in
structures with more complicated geometries if their correspond-
ing characteristic length, Lc, can be obtained.

The simplicity of the model rests on several assumptions: �a�
The dynamics of the vibrating body can be captured by a single
modal displacement and frequency, �b� the stress and strain fields
are completely known for the uncoupled state, �c� the dynamic
response of the body in the presence of thermoelastic coupling
differs only slightly from the uncoupled state, and �d� there is no
thermal interaction between the body and the environment. Fi-
nally, the ability of this model to provide a good qualitative pic-
ture of thermoelastic damping suggests that other forms of dissi-
pation might also be amenable for description using such simple
models.

Fig. 4 Plot of Q−1 /�E versus b/L obtained from the model and
Zener’s result
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Null-Field Approach for the
Multi-inclusion Problem Under
Antiplane Shears
In this paper, we derive the null-field integral equation for an infinite medium containing
circular holes and/or inclusions with arbitrary radii and positions under the remote
antiplane shear. To fully capture the circular geometries, separable expressions of fun-
damental solutions in the polar coordinate for field and source points and Fourier series
for boundary densities are adopted to ensure the exponential convergence. By moving the
null-field point to the boundary, singular and hypersingular integrals are transformed to
series sums after introducing the concept of degenerate kernels. Not only the singularity
but also the sense of principle values are novelly avoided. For the calculation of bound-
ary stress, the Hadamard principal value for hypersingularity is not required and can be
easily calculated by using series sums. Besides, the boundary-layer effect is eliminated
owing to the introduction of degenerate kernels. The solution is formulated in a manner
of semi-analytical form since error purely attributes to the truncation of Fourier series.
The method is basically a numerical method, and because of its semi-analytical nature, it
possesses certain advantages over the conventional boundary element method. The exact
solution for a single inclusion is derived using the present formulation and matches well
with the Honein et al.’s solution by using the complex-variable formulation (Honein, E.,
Honein, T., and Hermann, G., 1992, Appl. Math., 50, pp. 479–499). Several problems of
two holes, two inclusions, one cavity surrounded by two inclusions and three inclusions
are revisited to demonstrate the validity of our method. The convergence test and
boundary-layer effect are also addressed. The proposed formulation can be generalized
to multiple circular inclusions and cavities in a straightforward way without any
difficulty. �DOI: 10.1115/1.2338056�

1 Introduction
The distribution of stress in an infinite medium containing cir-

cular holes and/or inclusions under the antiplane shear has been
studied by many investigators. However, analytical solutions are
rather limited except for simple cases. To the authors’ best knowl-
edge, an exact solution of a single inclusion was derived by
Honein et al. �1� using the complex potential. Besides, analytical
solutions for two identical holes and inclusions were obtained by
Stief �2� and by Budiansky and Carrier �3�, respectively. Zimmer-
man �4� employed the Schwartz alternative method for plane
problems with two holes or inclusions to obtain a closed-form
approximate solution. In addition, Sendeckyj �5� proposed an it-
erative scheme for solving problems of multiple inclusions. How-
ever, the approach is rather complicated and explicit solutions
were not provided. Numerical solutions for problems with two
unequal holes and/or inclusions were provided by Honein et al.
�1� using the Möbius transformations involving the complex po-
tential. Not only antiplane shears but also screw dislocations were
considered. Numerical results were presented by Goree and
Wilson �6� for an infinite medium containing two inclusions under
the remote shear. Bird and Steele �7� used a Fourier series proce-
dure to revisit the antiplane elasticity problems of Honein et al.’s
paper �1�. To approximate the Honein et al.’s infinite problem, an
equivalent bounded-domain approach with the stress applied on
the outer boundary was utilized. A shear stress �zr on the outer

boundary is used in place of a stress �zy at infinity to approach the
Honein et al.’s results as the radius becomes large. Wu �8� solved
the analytical solution for two inclusions under the remote shear
in two directions by using the conformal mapping and the theorem
of analytic continuation. Based on the technique of analytical con-
tinuity and the method of successive approximation, Chao and
Young �9� studied the stress concentration on a hole surrounded
by two inclusions. For a triangle pattern of three inclusions, Gong
�10� employed the complex potential and Laurent series expansion
to calculate the stress concentration. Complex variable boundary
element method was utilized to deal with the problem of two
circular holes by Chou �11� and Ang and Kang �12�, indepen-
dently. To provide a general solution to the antiplane interaction
among multiple circular inclusions with arbitrary radii, shear
moduli, and location is not trivial. Mathematically speaking, only
circular boundaries in an infinite domain are concerned here.
Mogilevskaya and Crouch �13� have also employed Fourier series
expansion technique and used the Galerkin method instead of col-
location technique to solve the problem of circular inclusions in
2D elasticity. The advantage of their method is that one can tackle
a lot of inclusions even inclusions touching one another. However,
they did not expand a fundamental solution into a degenerate ker-
nel in the polar coordinate. Degenerate kernels play an important
role not only for mathematical analysis �14� but also for numerical
implementation. For example, the spurious eigenvalue �15�, ficti-
tious frequency �16�, and degenerate scale �17� have been math-
ematically and numerically studied by using degenerate kernels
for problems with circular boundaries. One gain is that exponen-
tial convergence instead of algebraic convergence in the boundary
element method �BEM� can be achieved using the Fourier expan-
sion �14�. Chen et al. �18� have successfully solved the antiplane
problem with circular holes using the null-field integral equation
in conjunction with the degenerate kernel and Fourier series. The
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extension to biharmonic problems was also implemented �19�.
This paper extends the idea to solve problems with circular inclu-
sions.

By introducing a multi-domain approach, an inclusion problem
can be decomposed into two parts. One is the infinite medium
with circular holes and the other is the problem with each circular
inclusion. After considering the continuity and equilibrium condi-
tions on the interface between the matrix and inclusion, a linear
algebraic system is obtained and the unknown Fourier coefficients
in the algebraic system can be determined. Then, the field poten-
tial and stress are easily obtained. Furthermore, an arbitrary num-
ber of circular inclusions can be treated by using the present
method without any difficulty. One must take care the vector de-
composition in using the adaptive observer system for the noncon-
focal case. Also, the boundary stress is easily determined by using
series sums instead of employing the sense of Hadamard principal
value. A general purpose program for arbitrary number of circular
inclusions with various radii and arbitrary positions was devel-
oped. The infinite medium with multiple circular holes �18� can be
solved as a limiting case of zero shear modulus of inclusions by
using the developed program. Several examples solved previously
by other researchers �1–3,6,8–10� were revisited to see the accu-
racy and efficiency of the present formulation. In addition, the test
of convergence is done and the boundary-layer effect for the cal-
culation of stresses is also addressed.

2 Problem Statement
The displacement field of the antiplane deformation is defined

as

u = v = 0, w = w�x,y� , �1�

where w is the only nonvanishing component of displacement
with respect to the Cartesian coordinate which is a function of x
and y. For a linear elastic body, the stress components are

�zx = �
�w

�x
, �2�

�zy = �
�w

�y
, �3�

where � is the shear modulus. The equilibrium equation can be
simplified to

��zx

�x
+

��zy

�y
= 0. �4�

Thus, we have

�2w

�x2 +
�2w

�y2 = �2w = 0. �5�

Equation �5� indicates that the governing equation of this problem
is the Laplace equation. We consider an infinite medium subject to
N circular inclusions bounded by the Bk contour �k=1,2 , . . . ,N�
for either matrix or inclusions under the antiplane shear �zx

� and
�zy

� at infinity or equivalently under the displacement w�

=�zx
� x /�+�zy

� y /� as shown in Fig. 1�a�. By taking the free body
along the interface between the matrix and inclusions, the problem
can be decomposed into two systems. One is an infinite medium
with N circular holes under the remote shear and the other is N
circular inclusions bounded by the Bk contour which satisfies the
Laplace equation as shown in Figs. 1�b� and 1�c�, respectively.
From the numerical point of view, this is the so-called multi-
domain approach. For the problem in Fig. 1�b�, it can be super-
imposed by two parts. One is an infinite medium under the remote
shear and the other is an infinite medium with N circular holes
which satisfies the Laplace equation as shown in Figs. 1�d� and
1�e�, respectively. This part was solved efficiently by Chen et al.
�18� and the null-field equation approach is adapted here again.

Therefore, one exterior problem for the matrix is shown in Fig.
1�e� and several interior problems for nonoverlapping inclusions
are shown in Fig. 1�c�. According to the null-field integral formu-
lation in Ref. �18�, the two problems in Figs. 1�e� and 1�c� can be
solved in a unified manner since they both satisfy the Laplace
equation.

3 A Unified Formulation for Exterior and Interior
Problems

3.1 Dual Boundary Integral Equations and Dual Null-
Field Integral Equations. The boundary integral equation for the
domain point can be derived from the third Green’s identity �20�,
we have

2�w�x� =�
B

T�s,x�w�s�dB�s� −�
B

U�s,x�t�s�dB�s�, x � D ,

�6�

2�
�w�x�
�nx

=�
B

M�s,x�w�s�dB�s� −�
B

L�s,x�t�s�dB�s�, x � D ,

�7�

where t�s�=�w�s� /�ns, s and x are the source and field points,
respectively, B is the boundary, D is the domain of interest, ns and
nx denote the outward normal vector at the source point s and field
point x, respectively, and the kernel function U�s ,x�=ln r, �r
��x−s��, is the fundamental solution which satisfies

�2U�s,x� = 2���x − s� , �8�

in which ��x−s� denotes the Dirac-delta function. The other ker-
nel functions, T�s ,x�, L�s ,x�, and M�s ,x�, are defined by

T�s,x� �
�U�s,x�

�ns
, L�s,x� �

�U�s,x�
�nx

, M�s,x� �
�2U�s,x�
�ns�nx

.

�9�

By collocating x outside the domain �x�Dc�, we obtain the dual
null-field integral equations as shown below

0 =�
B

T�s,x�w�s�dB�s� −�
B

U�s,x�t�s�dB�s�, x � Dc,

�10�

0 =�
B

M�s,x�w�s�dB�s� −�
B

L�s,x�t�s�dB�s�, x � Dc,

�11�

where Dc is the complementary domain. Based on the separable
property, the kernel function U�s ,x� is expanded into the degen-
erate form by separating the source point and field point in the
polar coordinate �21�

U�s,x�

=�Ui�R,�;�,�� = ln R − 	
m=1

�
1

m

 �

R
�m

cos m�� − �� , R 	 �

Ue�R,�;�,�� = ln � − 	
m=1

�
1

m

R

�
�m

cos m�� − �� , � 
 R� ,

�12�

where the superscripts “i” and “e” denote the interior �R
�� and
exterior ��
R� cases, respectively. The origin of the observer
system for the degenerate kernel is �0,0�. Figure 2 shows the
graph of separate expressions of fundamental solutions where
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source point s located at R=10.0 and �=� /3. By setting the ori-
gin at o for the observer system, a circle with radius R from the
origin o to the source point s is plotted. If the field point x is
situated inside the circular region, the degenerate kernel belongs
to the interior expression of Ui; otherwise, it is the exterior case.
After taking the normal derivative � /�R with respect to Eq. �12�,
the T�s ,x� kernel yields

T�s,x�

=�Ti�R,�;�,�� =
1

R
+ 	

m=1

� 
 �m

Rm+1�cos m�� − �� , R 
 �

Te�R,�;�,�� = − 	
m=1

� 
Rm−1

�m �cos m�� − �� , � 
 R� ,

�13�

and the higher-order kernel functions, L�s ,x� and M�s ,x�, are
shown below

Fig. 1 „a… Infinite antiplane problem with arbitrary circular inclusions under
the remote shear, „b… infinite medium with circular holes under the remote
shear, „c… interior Laplace problems for each inclusion, „d… infinite medium
under the remote shear, and „e… exterior Laplace problems for the matrix

Fig. 2 Graph of the degenerate kernel for the fundamental so-
lution, s= „10,� /3…
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L�s,x� =�Li�R,�;�,�� = − 	
m=1

� 
�m−1

Rm �cos m�� − �� , R 
 �

Le�R,�;�,�� =
1

�
+ 	

m=1

� 
 Rm

�m+1�cos m�� − �� , � 
 R� ,

�14�

M�s,x� =�Mi�R,�;�,�� = 	
m=1

� 
m�m−1

Rm+1 �cos m�� − �� , R 	 �

Me�R,�;�,�� = 	
m=1

� 
mRm−1

�m+1 �cos m�� − �� , � 
 R� .

�15�

Since the potentials resulted from T�s ,x� and L�s ,x� kernels are
discontinuous across the boundary, the potentials of T�s ,x� and
L�s ,x� for R→�+ and R→�− are different. This is the reason why
R=� is not included for degenerate kernels of T�s ,x� and L�s ,x�
in Eqs. �13� and �14�. For problems with circular boundaries, we
apply the Fourier series expansions to approximate the potential w
and its normal derivative t on the boundary as

w�sk� = a0
k + 	

n=1

L

�an
k cos n�k + bn

k sin n�k� ,

sk � Bk, k = 0,1,2, . . . ,N , �16�

t�sk� = p0
k + 	

n=1

L

�pn
k cos n�k + qn

k sin n�k� ,

sk � Bk, k = 0,1,2, . . . ,N , �17�

where t�sk�=�w�sk� /�ns, an
k, bn

k, pn
k and qn

k �n=0,1 ,2 , . . .L� are the
Fourier coefficients and �k is the polar angle. In the real compu-
tation, only 2L+1 finite terms are considered where L indicates
the truncated terms of Fourier series.

3.2 Adaptive Observer System [18,19]. By using the collo-
cation method, the null-field integral equation becomes a set of
algebraic equations for the Fourier coefficients. To ensure the sta-
bility of the algebraic equations, one has to choose collocating
points throughout all the circular boundaries of the inclusions.
Since the boundary integral equation is derived from the recipro-
cal theorem of energy concept. Therefore, the boundary integral
equation is frame indifferent due to the objectivity rule. This is the
reason why the observer system is adaptively to locate the origin
at the center of circle in the boundary integration. The adaptive
observer system is chosen to fully employ the property of degen-
erate kernels. Figures 3�a� and 3�b� show the boundary integration
for the circular boundary in the adaptive observer system. It is
worth noting that the origin of the observer system is located on
the center of the corresponding circle under integration to entirely
utilize the geometry of circular boundary for the expansion of
degenerate kernels and boundary densities. The dummy variable
in the circular integration is the angle ��� instead of the radial
coordinate �R�.

3.3 Linear Algebraic System. By moving the null-field point
xm to the kth circular boundary in the limit sense for Eq. �10� in
Fig. 3�a�, we have

0 = 	
k=0

N �
Bk

T�Rk,�k;�m,�m�w�Rk,�k�Rkd�k

− 	
k=0

N �
Bk

U�Rk,�k;�m,�m�t�Rk,�k�Rkd�k,

x��m,�m� � Dc, �18�

where N is the number of circular inclusions and B0 denotes the
outer boundary for the bounded domain. In case of the infinite
problem, B0 becomes B�. Note that the kernels U�s ,x� and T�s ,x�
are assumed in the degenerate form given by Eqs. �12� and �13�,
respectively, while the boundary densities w and t are expressed in
terms of the Fourier series expansion forms given by Eqs. �16�
and �17�, respectively. Then, the integrals multiplied by separate
expansion coefficients in Eq. �18� are nonsingular and the limit of
the null-field point to the boundary is easily implemented by using
appropriate forms of degenerate kernels. Through such an idea, all
the singular and hypersingular integrals are well captured. Thus,
the collocation point x��m ,�m� in the discretized Eq. �18� can be
considered on the boundary Bk, as well as the null-field point.
Along each circular boundary, 2L+1 collocation points are re-
quired to match 2L+1 terms of Fourier series for constructing a
square influence matrix with the dimension of 2L+1 by 2L+1. In
contrast to the standard discretized boundary integral equation for-
mulation with nodal unknowns of the physical boundary densities
w and t. Now the degrees of freedom are transformed to Fourier
coefficients employed in expansion of boundary densities. It is
found that the compatible relationship of the boundary unknowns
is equivalent by moving either the null-field point or the domain
point to the boundary in different directions using various degen-
erate kernels as shown in Figs. 3�a� and 3�b�. In the Bk integration,
we set the origin of the observer system to collocate at the center
ck to fully utilize the degenerate kernels and Fourier series. By
collocating the null-field point on the boundary, the linear alge-
braic system is obtained.

For the exterior problem of matrix, we have

�UM�
tM − t�� = �TM�
wM − w�� . �19�
For the interior problem of each inclusion, we have

�UI�
tI� = �TI�
wI� , �20�

where the superscripts “M” and “I” denote the matrix and inclu-
sion, respectively. �UM�, �TM�, �UI�, and �TI� are the influence
matrices with a dimension of �N+1��2L+1� by �N+1��2L+1�,

wM�, 
tM�, 
w��, 
t��, 
wI�, and 
tI� denote the column vectors of
Fourier coefficients with a dimension of �N+1��2L+1� by 1 in
which those are defined as follows:

�UM� = �
U00

M U01
M

¯ U0N
M

U10
M U11

M
¯ U1N

M

] ] � ]

UN0
M UN1

M
¯ UNN

M
� ,

�TM� = �
T00

M T01
M

¯ T0N
M

T10
M T11

M
¯ T1N

M

] ] � ]

TN0
M TN1

M
¯ TNN

M
� , �21�
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�UI� = �
U00

I U01
I

¯ U0N
I

U10
I U11

I
¯ U1N

I

] ] � ]

UN0
I UN1

I
¯ UNN

I
�, �TI� = �

T00
I T01

I
¯ T0N

I

T10
I T11

I
¯ T1N

I

] ] � ]

TN0
I TN1

I
¯ TNN

I
� ,

�22�


wM� =�
w0

M

w1
M

w2
M

]

wN
M
�, 
tM� =�

t0
M

t1
M

t2
M

]

tN
M
� , �23�


w�� =�
w0

�

w1
�

w2
�

]

wN
�

�, 
t�� =�
t0

�

t1
�

t2
�

]

tN
�

� , �24�


wI� =�
w0

I

w1
I

w2
I

]

wN
I
�, 
tI� =�

t0
I

t1
I

t2
I

]

tN
I
� , �25�

where 
wM�, 
tM�, 
w��, 
t��, 
wI�, and 
tI� are the vectors of
Fourier coefficients and the first subscript “j” �j=0,1 ,2 ,¯, N� in
�U jk

M�, �T jk
M�, �U jk

I �, and �T jk
I � denotes the index of the jth circle

where the collocation point is located and the second subscript “k”
�k=0,1 ,2 , . . ., N� denotes the index of the kth circle when inte-
grating on each boundary data 
wk

M −wk
��, 
tk

M − tk
��, 
wk

I�, and 
tk
I�,

N is the number of circular inclusions in the domain and the
number L indicates the truncated terms of Fourier series. It is
noted that 
w�� and 
t�� in Fig. 1�d� are the displacement and
traction due to the remote shear. The coefficient matrix of the
linear algebraic system is partitioned into blocks, and each off-
diagonal block corresponds to the influence matrices between two
different circular boundaries. The diagonal blocks are the influ-
ence matrices due to itself in each individual circle. After uni-
formly collocating the point along the kth circular boundary, the
submatrix can be written as

�U jk
M� = �

Ujk
0c��1� Ujk

1c��1� Ujk
1s��1� ¯ Ujk

Lc��1� Ujk
Ls��1�

Ujk
0c��2� Ujk

1c��2� Ujk
1s��2� ¯ Ujk

Lc��2� Ujk
Ls��2�

Ujk
0c��3� Ujk

1c��3� Ujk
1s��3� ¯ Ujk

Mc��3� Ujk
Ls��3�

] ] ] � ] ]

Ujk
0c��2L� Ujk

1c��2L� Ujk
1s��2L� ¯ Ujk

Lc��2L� Ujk
Ls��2L�

Ujk
0c��2L+1� Ujk

1c��2L+1� Ujk
1s��2L+1� ¯ Ujk

Lc��2L+1� Ujk
Ls��2L+1�

� , �26�

�T jk
M� = �

Tjk
0c��1� Tjk

1c��1� Tjk
1s��1� ¯ Tjk

Lc��1� Tjk
Ls��1�

Tjk
0c��2� Tjk

1c��2� Tjk
1s��2� ¯ Tjk

Lc��2� Tjk
Ls��2�

Tjk
0c��3� Tjk

1c��3� Tjk
1s��3� ¯ Tjk

Lc��3� Tjk
Ls��3�

] ] ] � ] ]

Tjk
0c��2L� Tjk

1c��2L� Tjk
1s��2L� ¯ Tjk

Lc��2L� Tjk
Ls��2L�

Tjk
0c��2L+1� Tjk

1c��2L+1� Tjk
1s��2L+1� ¯ Tjk

Lc��2L+1� Tjk
Ls��2L+1�

� , �27�

where �m, m=1,2 , . . ., 2L+1, is the angle of collocation point
along the circular boundary. Although both the matrices in Eqs.
�26� and �27� are not sparse, it is found that the higher order
harmonics are considered, the lower influence coefficients are ob-
tained in numerical experiments. It is noted that the superscript “
0s” in Eqs. �26� and �27� disappears since sin n�=0 �n=0�. The
element of �U jk

M� and �T jk
M� are defined, respectively, as

Ujk
nc��m� =�

Bk

U�sk,xm�cos�n�k�Rkd�k, n = 0,1,2, . . . ,L ,

m = 1,2, . . . ,2L + 1, �28�

Ujk
ns��m� =�

Bk

U�sk,xm�sin�n�k�Rkd�k,

n = 1,2, . . . ,L, m = 1,2, . . . ,2L + 1, �29�

Tjk
ns��m� =�

Bk

T�sk,xm�cos�n�k�Rkd�k,

n = 0,1,2, . . . ,L, m = 1,2, . . . ,2L + 1, �30�

Tjk
ns��m� =�

Bk

T�sk,xm�sin�n�k�Rkd�k,

n = 1,2, . . . ,L, m = 1,2, . . . ,2L + 1, �31�

where k is no sum, sk= �Rk ,�k�, and �m is the angle of collocation
point xm along the boundary. The submatrix �U jk

I � and �T jk
I � can be

written in a similar way. Equation �18� can be calculated by em-
ploying the orthogonal property of trigonometric function in the
real computation. Only the finite L terms are used in the summa-
tion of Eqs. �16� and �17�. The explicit forms of all the boundary
integrals for U, T, L, and M kernels are listed in the Table 1. Finite
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values of singular and hypersingular integrals are well captured
after introducing the degenerate kernel. Besides, the limiting case
across the boundary �R−→�→R+� is also addressed. The continu-
ous and jump behavior across the boundary is well described.

Instead of boundary data in the BEM, the Fourier coefficients
become the new unknown degrees of freedom in the formulation.
Two cases may be solved in a unified manner using the null-field
integral formulation:

�1� One bounded problem of the circular domain in Fig. 1�c�
becomes the interior problem for each inclusion.

�2� The other is unbounded, i.e., the outer boundary B0 in Fig.
3�a� is B�. It is the exterior problem for the matrix as
shown in Fig. 1�e�.

The direction of contour integration should be taken care, i.e.,
counterclockwise and clockwise directions are for the interior and
exterior problems, respectively.

3.4 Match of Interface Conditions. According to the conti-
nuity of displacement and equilibrium of traction along the kth
interface, we have the two constraints


wM� = 
wI� on Bk, �32�

��0�
tM� = − ��k�
tI� on Bk, �33�

where ��0� and ��k� are defined as follows:

��0� = �
�0 0 ¯ 0

0 �0 ¯ 0

] ] � ]

0 0 ¯ �0

�, ��k� = �
�k 0 ¯ 0

0 �k ¯ 0

] ] � ]

0 0 ¯ �k

� ,

�34�

where �0 and �k denote the shear modulus of the matrix and the
kth inclusion, respectively. By assembling the matrices in Eqs.
�19�, �20�, �32�, and �33�, we have

�
TM − UM 0 0

0 0 TI − UI

I 0 − I 0

0 �0 0 �k

��
wM

tM

wI

tI
� = �

a

0

0

0
� , �35�

where 
a� is the forcing term due to the remote shear stress and �I�
is the identity matrix. The calculation for the vector 
a� is elabo-
rated on later in Appendix A. After obtaining the unknown Fourier
coefficients in Eq. �35�, the origin of observer system is set to ck
in the Bk integration as shown in Fig. 3�b� to obtain the field
potential by employing Eq. �6�. The differences between the
present formulation and the conventional BEM are listed in Table
2.

3.5 Vector Decomposition Technique for the Potential
Gradient in the Hypersingular Equation. In order to determine
the stress field, the tangential derivative should be calculated with
care. Also Eq. �7� shows the normal derivative of potential for
domain points. For the nonconcentric cases, special treatment for
the potential gradient should be considered as the source point and
field point locate on different circular boundaries. As shown in
Fig. 4, the normal direction on the boundary �1, 1�� should be
superimposed by those of the radial derivative �3, 3�� and angular
derivative �4, 4�� through the vector decomposition technique.
According to the concept of vector decomposition technique, the
kernel functions of Eqs. �14� and �15� can be modified to

L�s,x� =�Li�R,�;�,�� = − 	
m=1

� 
�m−1

Rm �cos m�� − ��cos�� − �� − 	
m=1

� 
�m−1

Rm �sin m�� − ��cos
�

2
− � + �� , R 
 �

Le�R,�;�,�� =
1

�
+ 	

m=1

� 
 Rm

�m+1�cos m�� − ��cos�� − �� − 	
m=1

� 
 Rm

�m+1�sin m�� − ��cos
�

2
− � + �� , � 
 R� , �36�

Fig. 3 „a… Sketch of the null-field integral equation for a null-
field point in conjunction with the adaptive observer system
„x−D ,x\Bk… and „b… sketch of the boundary integral equation
for a domain point in conjunction with the adaptive observer
system „x«D ,x\Bk…
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M�s,x� =�Mi�R,�;�,�� = 	
m=1

� 
m�m−1

Rm+1 �cos m�� − ��cos�� − �� − 	
m=1

� 
m�m−1

Rm+1 �sin m�� − ��cos
�

2
− � + �� , R 	 �

Me�R,�;�,�� = 	
m=1

� 
mRm−1

�m+1 �cos m�� − ��cos�� − �� − 	
m=1

� 
mRm−1

�m+1 �sin m�� − ��cos
�

2
− � + �� , � 
 R� �37�

where � and � are shown in Fig. 4. For the special case of confo-
cal, the potential gradient is derived free of special treatment since
�=�.

3.6 Stresses Described in the Polar Coordinate. After ob-
taining all the unknown Fourier coefficients of w and t for the
matrix and inclusions, the stress described in the polar coordinate

Table 1 Influence coefficients for the singularity distribution on the circular boundary
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can be determined by

�zr = �zx cos � + �zy sin � , �38�

�z� = − �zx sin � + �zy cos � , �39�

where �zr and �z� are the normal and tangential stresses, respec-
tively. The boundary integral equation for the domain point in-
cluding the boundary point instead of the null-field formulation is
employed to find the stress by employing the appropriate form of
degenerate kernels. The flowchart of the present method is shown
in Table 3.

4 Numerical Results and Discussions
First, we derive an exact solution for a single inclusion using

the present formulation in Appendix B. Symbolic software of
MATHEMATICA is employed to solve a 2L+1 by 2L+1 sparse ma-
trix by using the induction concept. Then, seven problems solved
by previous scholars are revisited by using the present method to
show the generality and validity of our formulation. Besides, we
demonstrate the problem of interaction of two cavities in case 1 to
compare the present method with the conventional BEM.

4.1 Case 1: Two Equal-Sized Holes Lie on the x Axis (a
Limiting Case) [2,9]. Figure 5�a� shows the geometry of two
equal-sized holes in the infinite medium under the remote shear

Table 1 „Continued.…
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�zy
� =
�. The stress concentration of the problem is illustrated in

Fig. 5�b�. It indicates that the present result agrees well with the
analytical solution of Steif �2� and those obtained by Chao and
Young �9� even though the two holes approach each other. Figure
5�c� shows that only few terms of Fourier series can obtain good
results. However, more nodes are required by using the conven-
tional BEM to achieve convergence. Our formulation is free of
boundary-layer effect instead of appearance by using the conven-
tional BEM when the stress �z� near the boundary as shown in
Fig. 5�d�. Stress concentration factors and errors for various dis-
tances between two holes by using the present method and the
conventional BEM are listed in Table 4. These results show that
the present method is more accurate and effective than those of
the conventional BEM. Under the same error tolerance, the CPU
time of the present method is fewer than that of the conventional
BEM. Besides, it is noted that more terms of Fourier series are
required to capture the singular behavior when the two holes ap-
proach each other.

4.2 Case 2: Two Identical Inclusions Locating on the x
Axis [3]. We consider two identical elastic inclusions of radii r1
=r2 and shear moduli �1=�2 embedded in an infinite medium
subjected to the remote shear �zx

� =
� at infinity as shown in Fig.
6�a�. Figure 6�b� shows that stress concentrations diminish when
the inclusion spacing increases. We note that the mathematical
model of rigid-inclusion problem is equivalent to that of uniform
potential flow past two parallel cylinders with no circulation
around either cylinder. The remote shear �zx

� =
� is similar to the
velocity V� in the x direction at infinity and the velocity field is
similar to the stress field �22�.

4.3 Case 3: Two Circular Inclusions Locating on the x Axis
[6]. Two inclusions with radii of r1 and r2 under the remote shear
are considered as shown in Fig. 7�a�. The stress distributions in
the matrix including the radial component �zr and the tangential
component �z� around the circular boundary of radius r1 are plot-
ted in Figs. 7�b� and 7�c� for various inclusion spacings when the
two inclusion radii are equal-sized �r1=r2�. Two limiting cases are
considered for rigid inclusions ��1 /�0=�2 /�0=�� and for cavi-
ties ��1 /�0=�2 /�0=0.0�. It can be found that �z�=0 or �zr=0
for rigid inclusions or cavities as predicted for the single inclusion
or cavity, respectively. Moreover, the nonzero stress components
for these two cases are identical when the stress components at
infinity are interchanged, i.e., the stresses around the circular
boundary �zr in one case equals to �z� for the other case due to
the analogy of mathematical model. It can be seen from Figs. 7�b�
and 7�c� that unbounded stresses apparently occur at �=180 deg
under the condition of �zx

� =
� for rigid inclusions or �zy
� =
� for

cavities when two inclusions approach closely or even touch each
other. In Figs. 7�d� and 7�e�, the variation of stresses around the
circular boundary of radius r1 is shown versus radius r2 for a fixed
separation of d=0.1r1. More terms of Fourier series are required
to capture the singular behavior when the two inclusions approach
each other as well as the two radii of inclusions are quite different.
The present numerical results match very well with those by
Goree and Wilson �6�.

4.4 Case 4: Two Circular Inclusions Locating on the y Axis
[1]. The infinite medium with two elastic inclusions is under the
uniform remote shear �zy

� =
�. The first inclusion centered at the
origin of radius r1 with the shear modulus �1=2�0 /3 and the
other inclusion of radius r2=2r1 centered on y axis at r1+r2+d
�d=0.1r1� with the shear modulus �2=13�0 /7 are shown in Fig.
8�a�. In order to be compared with the Honein et al.’s data ob-
tained by using the Möbius transformations �1�, the stresses along
the boundary of radius r1 is shown in Fig. 8�b�. It satisfies the
equilibrium traction along the interface of circular boundary. The
stress concentration factor reaches maximum at �=0 deg in the
matrix. Figure 8�c� shows that only few terms of Fourier series
can yield acceptable results. Figures 8�d� and 8�e� indicates that
our formulation is free of boundary-layer effect since stresses �zr
and �z� near the boundary can be smoothly predicted, respec-
tively. The key to eliminate the boundary-layer effect is that we
introduce the degenerate kernel to describe the jump function for
interior and exterior regions as shown in Table 1.

4.5 Case 5: Two Inclusions Located on the x Axis Under
the Two-Direction Shear [8]. In Fig. 9�a�, the parameters used in
the calculation are taken as r1=r2, �zx

� =�zy
� =
�, �0=0.185, and

�1=�2=4.344. Figure 9�b� shows stress distributions �zx and �zy

Table 2 Comparisons of the present method and conventional BEM

Fig. 4 Vector decomposition for the potential gradient in the
hypersingular equation
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along the x axis when d=0.1. It can be seen that the stress com-
ponent �zx is continuous across the interface between two differ-
ent materials and has a peak value between two inclusions. The
stress component �zy is discontinuous across the interface of two
different materials. Figures 9�c� and 9�d� illustrate stress distribu-
tions of �zx and �zy along the x axis when d=0.4 and d=1.0,
respectively. Both figures indicate that stress components �zx and
�zy have similar changing curves to those of Fig. 9�b�. However, it
should be noted that the maximum value of stress component �zx
drops when the distance d between the two inclusions increases.
Figure 9�e� illustrates the normal stress �zr distributions along the
contour �1.001,�� for various cases of d=0.1, 0.5, and 1.0. It
shows that the shear stress �zr increases as the distance d between
the two inclusions decreases at the point where two inclusions
approach each other. However, the distance d has a slight effect on
�zr when the angle is in the range of 90 deg���320 deg. Figure
9�f� illustrates the tangential stress �z� distributions along the con-
tour �1.001,�� for various distances of d=0.1, 0.5, and 1.0. It

should be noted that the absolute value of tangential stress �z� is
very small in comparison with that of �zr. Figure 9�g� illustrates
the variation of stress components �zx and �zy in the matrix at the
point �1.001,0 deg� versus the distance d between the two inclu-
sions. From the figure, it can be seen that stress components �zx

and �zy have higher values when the two inclusions approach each
other. However, stress components �zx and �zy tend smoothly to
the constant when the two inclusions separate away. Figure 9�h�
shows stress distributions �zx and �zy along the x axis when the
two inclusions touch each other. It can be seen that the shear stress
�zx has a peak value at the touched point. For the increasing value
of x, �zx tends to match the remote shear 
�. Besides, the stress
component �zy is continuous at the tangent point �x /r1=1.0� and
has a discontinuous jump on the interface between the matrix and
inclusion �x /r1=3.0�. The present results in Figs. 9�b�–9�h� agree
very well with the Wu’s data �8�. Only the stress component �zx at
the touched point is lower than the Wu’s data as shown in

Table 3 Flowchart of the present method
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Fig. 9�h�, since separate Fourier expansions are described for the
touched inclusions in our formulation.

4.6 Case 6: One Hole Surrounded by Two Circular Inclu-
sions [9]. Figure 10�a� shows that a circular hole centered at the
origin of radius r1 is surrounded by two circular inclusions
�d /r1=1.0� with equal radius r2=r3=2r1 and equal shear modulus
�2=�3 under the remote shear �zx

� =
�. We solved the distribution
of the tangential stress along the circular hole influenced by the
surrounding inclusions when they are arrayed in parallel ��
=0 deg� or perpendicular ��=90 deg� to the direction of uniform
shear as shown in Figs. 10�b� and 10�c�. It is found that, when a
hole and two inclusions are arrayed parallel to the applied load
��=0 deg�, the stress concentration factor, reaching maximum at

�=90 deg along a circular hole, increases �or decreases� as the
neighboring hard �or soft� inclusions approach a circular hole as
shown in Figs. 10�b� and 10�d�. On the contrary, when a hole and
two inclusions are perpendicular to the applied load ��=90 deg�,
the stress concentration factor, reaching maximum at �=90 deg,
decreases �or increases� as the neighboring hard �or soft� inclu-
sions approach a circular hole as shown in Figs. 10�c� and 10�e�.
Our numerical results match very well with the Chao and Young’s
results �9�.

4.7 Case 7: Three Identical Inclusions Forming an Equi-
lateral Triangle [10]. Figure 11�a� shows that three identical in-
clusions �r1=r2=r3� subjected to the uniform shear stress �zy

�

=
� at infinity. The three inclusions form an equilateral triangle

Fig. 5 „a… Two equal-sized holes „r1=r2… with centers on the x axis, „b… stress concentration of the problem containing two
equal-sized holes, „c… convergence test of the problem containing two equal-sized holes „d=1.0…, and „d… tangential stress in
the matrix near the boundary „d=1.0…
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and are placed at a distance 4r1 apart. Besides, the distance the
hoop stress �z� in the matrix around the boundary of the inclusion
located at the origin as shown in Fig. 11�b�. Good agreement is
obtained between the Gong’s results �10� and ours. It is obvious
that the limiting case of circular holes ��1 /�0=�2 /�0=�3 /�0
=0.0� leads to the maximum stress concentration at �=0 deg,
which is larger than 2 of a single hole due to the interaction effect.
It is also interesting to note that the stress component �z� vanishes
in the case of rigid inclusions ��1 /�0=�2 /�0=�3 /�0=��, which
can be explained by a general analogy between solutions for
traction-free holes and those involving rigid inclusions �2�.

5 Conclusions
A semi-analytical formulation for multiple circular inclusions

with arbitrary radii, moduli, and locations using degenerate ker-
nels and Fourier series in the adaptive observer system was devel-
oped to ensure the exponential convergence. Generally speaking,
only ten terms of Fourier series �L=10� can obtain the acceptable

and accurate results. More terms of Fourier series are required to
capture the singular behavior when the two inclusions approach
each other as well as the two radii of inclusions are quite different.
The singularity and hypersingularity were avoided after introduc-
ing the concept of degenerate kernels for interior and exterior
regions. Besides, the boundary-layer effect for the stress calcula-
tion is eliminated since the degenerate kernel can describe the
jump behavior for interior and exterior domains, respectively. The
exact solution for a single inclusion was also rederived by using
the present formulation. Several examples investigated by Steif
�2�, Budiansky and Carrier �3�, Goree and Wilson �6�, Honein et
al. �1�, Wu �8�, Chao and Young �9�, and Gong �10� were revis-
ited, respectively. Good agreements were made after comparing
with the previous results. Regardless of the number, size, and the
position of circular inclusions and cavities, the proposed method
can offer good results. Moreover, our method presented here can
be applied to Laplace problems with circular boundaries, e.g.,

Table 4 Stress concentration factors and errors for various distances between two holes
using the present approach and BEM

Fig. 6 „a… Two identical inclusions with centers on the x axis and „b… average
shear stress of inclusion versus fiber spacing
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electrostatic and magnetic problems. Besides, extensions to Helm-
holtz and biharmonic operators as well as 3D problems are
straightforward.
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Appendix A: Calculation for the Forcing Term {a}
According to Eqs. �2� and �3�, the displacement and traction

fields in the infinite medium due to the remote shear �zx
� and �zy

� in
Fig. 1�d� are

w� =
�zx

�

�0
x +

�zy
�

�0
y , �A1�

t� =
�w�

�n
= − 
�zx

�

�0
nx +

�zy
�

�0
ny� , �A2�

where the unit outward normal vector on the boundary is n
= �nx ,ny�. By comparing Eq. �19� with the first low of Eq. �35�, we
have


a� = �TM�
w�� − �UM�
t�� . �A3�

For the circular boundary which the original system is located, the
boundary conditions due to the remote shear are

w1
� =

�zx
�

�0
r1 cos �1 +

�zy
�

�0
r1 sin �1, �A4�

t1
� = − 
�zx

�

�0
cos �1 +

�zy
�

�0
sin �1� . �A5�

Considering the boundary condition, due to the remote shear, on
the kth circular boundary with respect to the observer system, we
have

Fig. 7 „a… Two circular inclusions with centers on the x axis, „b… effects of spacing on the stresses around
the boundary of radius r1 for two equal-sized inclusions „L=20…, „c… effects of spacing on the stresses
around the boundary of radius r1 for two equal-sized inclusions „L=40…, „d… effects of the size of neighbor-
ing inclusion on the stresses around the boundary of radius r1 with d=0.1r1 „L=80…, and „e… effects of the
size of neighboring inclusion on the stresses around the boundary of radius r1 with d=0.1r1 „L=100…
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wk
� =

�zx
�

�0
�ex + rk cos �k� +

�zy
�

�0
�ey + rk sin �k� , �A6�

tk
� = − 
�zx

�

�0
cos �k +

�zy
�

�0
sin �k� , �A7�

where ex and ey, respectively, denote the eccentric distance of kth
inclusion in the x and y direction. By comparing Eq. �A5� with
Eq. �A7�, we find that t� can be described in any observer system
without any change, where �k denotes the polar angle in the adap-
tive observer coordinate system.

Appendix B: Derivation of the Exact Solution for a
Single Inclusion

We derive the exact solution for antiplane problem with a single
inclusion under the remote shear using the present formulation.
The infinite medium under the shear stress �zx

� =0 and �zy
� =
� at

infinity is considered. The Fourier coefficients in Eq. �24� can be
written as


w�� =�
0

0


�r1

�0

]

0

0

�
�2L+1��1

, 
t�� =�
0

0

−

�

�0

]

0

0

�
�2L+1��1

, �B1�

where r1 is the radius of the single inclusion. By substituting the
appropriate degenerate kernels in Eqs. �12� and �13� into Eqs. �19�

and �20� and employing the continuity of displacement and equi-
librium of traction along the interface in Eqs. �32� and �33�, the
unknown boundary data in Eqs. �23� and �25� can be obtained
using the symbolic software MATHEMATICA as shown below


wM� =�
0

0

2
�r1

�0 + �1

]

0

0

�
�2L+1��1

, 
tM� =�
0

0

− 2
��1

�0��0 + �1�
]

0

0

�
�2L+1��1

,

�B2�


wI� =�
0

0

2
�r1

�0 + �1

]

0

0

�
�2L+1��1

, 
tI� =�
0

0

2
�

�0 + �1

]

0

0

�
�2L+1��1

.

�B3�

After substituting Eqs. �B1� and �B2� into the boundary integral
equation for the domain point in Eq. �6�, we obtain the total stress
fields in the matrix

Fig. 7 „Continued….
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Fig. 8 „a… Two circular inclusions with centers on the y axis, „b… stresses around the circular boundary of
radius r1, „c… convergence test of the two-inclusions problem, „d… radial stress in the matrix near the boundary,
and „e… tangential stress in the matrix near the boundary
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Fig. 9 „a… Two circular inclusions embedded in a matrix under the remote antiplane shear in two directions, „b…
stress distributions along the x axis when d=0.1, „c… stress distributions along the x axis when d=0.4, „d…
stress distributions along the x axis when d=1.0, „e… normal stress distributions along the contour „1.001,�…, „f…
tangential stress distributions along the contour „1.001,�…, „g… variations of stresses at the point „1.001,0 deg…,
and „h… stress distributions along the x axis when the two inclusions touch each other
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Fig. 10 „a… One hole surrounded by two circular inclusions, „b… tangential stress distribution along the hole
boundary with �=0 deg, „c… tangential stress distribution along the hole boundary with �=90 deg, „d… stress
concentration as a function of the spacing d /r1 with �=0 deg, and „e… stress concentration as a function of the
spacing d /r1 with �=90 deg
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�zx
M = �0

�wM

�x
+ �zx

� = − 2
�

r1
2

�2

�0 − �1

�0 + �1
sin � cos � ,

r1 � � � �, 0 � � � 2� , �B4�

�zy
M = �0

�wM

�y
+ �zy

� = 
�

r1
2

�2

�0 − �1

�0 + �1
�cos2 � − sin2 �� + 
�,

r1 � � � �, 0 � � � 2� . �B5�

After substituting Eq. �B3� into the boundary integral equation for
the domain point in Eq. �6�, we have the total stress fields in the
inclusion

�zx
I = �1

�wI

�x
= 0, 0 � � � r1, 0 � � � 2� , �B6�

�zy
I = �1

�wI

�y
= 2
�

�1

�0 + �1
, 0 � � � r1, 0 � � � 2� .

�B7�

Finally, the stress components �zr and �z� in Eqs. �38� and �39�
can be superimposed by using �zx and �zy as shown below

�zr
M = 2
�

r1
2

�2

�1

�0 + �1
sin �, r1 � � � �, 0 � � � 2� ,

�B8�

�z�
M = 2
�

r1
2

�2

�0

�0 + �1
cos �, r1 � � � �, 0 � � � 2� ,

�B9�

�zr
I = 2
�

�1

�0 + �1
sin �, 0 � � � r1, 0 � � � 2� ,

�B10�

�z�
I = 2
�

�1

�0 + �1
cos �, 0 � � � r1, 0 � � � 2� .

�B11�

It is obvious to see that the maximum stress concentration occurs
at �=r1 and �=0. The stress concentration factor is reduced due
to the inclusion in comparison with that of cavity ��1=0� as
shown in Eq. �B9�. Besides, it is noted that �zr

M coincides with �zr
I

as required by the traction equilibrium on the interface between
the matrix and inclusion. The exact solution for a single inclusion

Fig. 11 „a… Three identical inclusions forming an equilateral triangle, and „b…
tangential stress distribution around the inclusion located at the origin
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using the present formulation matches well with the previous one
obtained by employing the complex-variable formulation �1�.
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Surface Energy for Creation of
Multiple Curved Cracks in
Rubbery Materials
A fracture parameter Mc is proposed for evaluation of the surface energy associated with
the creation of multiple curved cracks in 2D rubbery solids under the action of large
deformation. Based on the concept of the M-integral, the parameter is developed by
performing the integration along a closed contour enclosing all the cracks and with
respect to a reference coordinate system originated at the geometric center of all the
crack tips. The integration is shown to be path-independent so that the complicated
singular stress field in the near-tip areas need not be involved in the calculation. It is thus
suggested that Mc be possibly used as a fracture parameter for describing the degrada-
tion of material and/or structural integrity caused by irreversible evolution of multiple
curved cracks in a rubbery media. �DOI: 10.1115/1.2338058�

1 Introduction
For those materials with mechanical behavior remaining �non-

linearly� elastic at large strains, we often call them rubbery. Rub-
bery materials find applications in many engineering components,
where the structural integrity is substantially limited by the
growth of a system of distributed cracks rather than a single,
continuous crack. Such multi-cracked fracture conditions range
from the presence of a finite number of macrocracks, to the for-
mation of densely distributed microcracks with random location
and orientation. Also, the cracks may have arbitrary curved shapes
and so the associated fracture behavior depends significantly on
the crack geometry. For rubbery problems involving nonlinear
responses under large deformations, the local stress state in the
region around these strongly interacted crack tips becomes quite
complicated and difficult to describe analytically. Investigation on
the use of proper energy parameters in characterizing the global
fracture state corresponding to the multi-cracked damage is, there-
fore, in need.

For rubbery material problems containing a single crack, the
Jk-integrals �k=1,2� have been successfully used for evaluating
the energy release rates corresponding to extension and kinking of
the crack tip either analytically or numerically �e.g., Rivlin and
Thomas �1�, Pidaparti, et al. �2�, Chang and Yeh �3�, etc.�. How-
ever, due to their “local” nature associated with a single crack tip,
Jk are not feasible for description of the “global” multi-cracked
fracture state.

In addition to Jk, the well-known energy conservation contour
integrals derived from Noether’s theorem in plane elasticity also
include the M- and L-integrals �Knowles and Sternberg �4�, Bu-
diansky and Rice �5�, Eshelby �6�, and Freund �7��. While appli-
cation of the M-integral is not as common as Jk, it has been used
in linearly elastic problems containing either an isolated singular
point or a straight crack �e.g., Herrmann and Herrmann �8�, Eis-
chen and Herrmann �9�, Seed �10�, etc.�. The integration contours
for M in these applications were defined in a “global” way, i.e., M
is evaluated along a counterclockwise contour enclosing the
whole single defect. Such a global feature implies the applicability

of the M-integral to fracture analysis for multi-cracked problems,
provided that the integration contours are suitably chosen.

Due to its global feature, the M-integral has recently been ap-
plied to characterizing the fracture state associated with the pres-
ence of multiple straight cracks. A series of studies were presented
in evaluating the material damage level for uniformly loaded mi-
crocracking linearly elastic solids, where the calculation is carried
out by including all the microcracks inside the integration contour
�Chen �11�, Wang and Chen �12�, Tian �13�, etc.�. Also, a
problem-invariant parameter Mc is proposed by the authors and
suggested as an energy fracture parameter for describing the deg-
radation of material and/or structural integrity caused by the irre-
versible evolution of multiple cracks in linearly elastic solids
�Chang and Chien �14�, Chang and Wu �15�� and rubbery materi-
als �Chang and Peng �16��, respectively.

In this paper, an energy parameter Mc is proposed for evaluat-
ing the surface energy corresponding to the creation of a multiple-
cracked system, in which each crack may be of an arbitrary
curved shape. The formulation is based on the concept of the
M-integral and considered to be suited for fracture analysis in
rubbery material problems subjected to large elastic deformation.
The outline of this paper is organized as follows. In Sec. 2, an
Mc-integral is defined by suitably selecting the integration contour
and originating the coordinate system at the geometric center of
the enclosed curved cracks. Subsequently in Sec. 3, the property
of path-independence for Mc is established. In Sec. 4, the physical
meaning of Mc in the context of large deformation is interpreted.
In Sec. 5, the feasibility of Mc is illustrated via numerical ex-
amples conducted by using finite elements. Attention is addressed
to illustration on its use for the study of the material and/or struc-
tural behavior degraded due to presence of the curved cracks.

2 The Mc-Integral Under Large Deformation
In this section, the basic concept of the Mc-integral is intro-

duced for rubbery material problems containing curved cracks and
subjected to large elastic deformation. The integral is defined by
taking the conventional M-integral with specific selection of inte-
gration contour and reference coordinate system. In the following
study, the single-crack case is first considered, and then followed
by the multi-cracked condition.

2.1 A Single Curved Crack. In the context of large elastic
deformation, the following contour integral is applied with state
variables reinterpreted with respect to a specific reference con-
figuration. We consider a homogeneous rubbery body in a 2D
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field, containing a single curved crack with two tips P and Q at its
original �unstressed and undeformed� state �Fig. 1�. The crack is
of arbitrary curved shape and of length l. In this reference con-
figuration, a coordinate system originating at an arbitrarily chosen
point O is introduced and, with no loss of generality, the crack
lying tangentially parallel to the x1-direction �asymptotically at tip
Q�. The position vector at the geometric center C of the two tips is
denoted �. The body is then subjected to a system of external
loads and reaches its current deformed state. When the body is
subjected to no body forces, the M-integral with respect to O is
defined as

M =�
D

�Wnixi − Tk� �uk

�xi
�xi	ds �1�

The integral is performed in the undeformed reference configura-
tion, where D is a counterclockwise closed contour around the
whole crack and consists of four parts L++�1+L−+�2, W is the
strain energy density of the material �per unit undeformed vol-
ume�, T is the traction vector resulting from the first Piola-
Kirchhoff stress tensor along the contour, n is the outward unit
vector normal to D, s is the arc length along D, x is the position
vector of the integration point along D, and u is the displacement
vector. For rubbery materials modeled with hyperelasticity, the
first Piola-Kirchhoff stress � is defined by the following consti-
tutive relation as:

�ij =
�W

��ui,j�
�2�

with uij =�ui /�xj,
By definition, the integration is carried out by taking the limit-

ing case where �1 and �2 are shrunk onto the crack tips P and Q,
respectively, and L+ and L− are lying along the curved crack sur-
faces �this limiting case is not shown in Fig. 1�. When the crack
surfaces are traction-free, it can be shown �Appendix A� that M is
related to the Jk-integrals as

M = �k��Jk
P − Jk

Q� + ��
L++L−

Wnk d��	 +
lk

2
�Jk

P + Jk
Q�

+ ��
L++L−

��k −
lk

2
�Wnk d�	 �3�

where Jk
P and Jk

Q are the Jk integrals evaluated along �1 and �2,
respectively, lk is the length of the projection of l in the
xk-direction, � is the local curvilinear coordinate system lying
along the crack curve and originated at tip Q, and �k is the length

of the projection of � in the xk-direction. The Jk-integrals �say, at
point P� are defined as

Jk
P = lim

�1→0
�

�l

�Wnk − Ti� �ui

�xk
�	ds k = 1,2 �4�

Again, by definition, the Jk-integrals are evaluated by taking the
limiting case in which �1 and �2 are shrunk towards P and Q.
Equation �4� shows that, while Jk remains invariant for a given
boundary value problem, the value of M varies with the selection
of origin O and appear to depend linearly upon the components of
the corresponding position vector �. Nevertheless, by locating the
origin at the geometric center C, i.e., by taking �= �0,0�, we then
define a problem-invariant parameter Mc as

MC 
 �M��=�0,0� =
lk

2
�Jk

P + Jk
Q� + ��

L++L−
��k −

lk

2
�Wnk d�	

�5�

Further, it can easily be shown that the quantities in Eqs. �3� and
�5� are independent of the orientation of the coordinate system.
Such a characteristic implies that M, as well as Mc, remains un-
changed when they are evaluated with respect to an arbitrarily
oriented system, e.g., x1�−x2� depicted in Fig. 1.

For the special case corresponding to a straight crack, the re-
sults of M and Mc reduce to

M = �1�J1
P − J1

Q� + �2�J2
P − J2

Q� +
l

2
�J1

P + J1
Q�

+ �2�
L++L−

Wn2 ds �6�

and

MC =
l

2
�J1

P + J1
Q� �7�

respectively, where l is the length of the crack.

2.2 Multiple Curved Cracks. Consider the 2D homogeneous
rubbery body containing N distributed curved cracks at its refer-
ence configuration �i.e., the original undeformed state�, each curve
of length lr �r=1, . . . ,N� and with random location and orienta-
tion, as shown in Fig. 2 �N=5 in this figure�. The geometric center
of all the crack tips �i.e., Pr and Qr, r=1, . . . ,N� is positioned and
denoted C.

The M-integral associated with the N curved cracks is defined
as

Fig. 1 A rubbery body containing a two-tip curved crack at its
original state

Fig. 2 A homogeneous rubbery body containing N distributed
curved cracks at its original state „N=5 in this figure…
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M = �
r=1

N �
Dr
�Wnixi − Tk� �uk

�xi
�xi	ds �8�

where Dr is the counterclockwise closed contour associated with
the rth crack. Still, when the body is subjected to large deforma-
tion, the above contour integral is applied with all state variables
reinterpreted with respect to this reference configuration. Again,
by definition, the integration is performed by taking the limiting
case in which the portions of Dr are shrunk onto the crack tips and
lying along the crack surfaces. Also, note that the value of M
varies with respect to different selections of origin O. Therefore,
by further locating the origin at the geometric center C, the
problem-invariant parameter Mc can thus be defined.

3 Path-Independence
In this section, the property of path-independence for Mc is

established. We first consider the instance containing a single
curved crack, as shown in Fig. 1. When the crack surfaces are
traction-free, it can easily be shown that the M-integral defined in
Eq. �1� is path-independent and has the same value for any remote
contour, say Do, around the whole crack. As a consequence, the
Mc-integral defined in Eq. �5� is also path-independent in the same
manner.

Next, we consider the condition that contains N distributed
curved cracks, as shown in Fig. 2. When all the crack surfaces are
traction-free, it can be shown that the M-integral defined in Eq.
�8� is path-independent and has the same value for any remote
contour Do, i.e.,

M =�
Do

�Wnixi − Tk� �uk

�xi
�xi	ds �9�

The outer contour can be arbitrarily chosen �except for the re-
quirements to be inside the body, enclose all the N cracks, and
contain no other singularity in it�. The property of path-
independence implies that good accuracy of the integration can be
achieved by adopting a contour remote from the tips of the cracks,
where complicated singular stress behavior dominates. Note that
the Mc-integral is also path-independent in the same manner.

4 Physical Interpretation
In the following two subsections, the physical meaning for Mc

in the context of large deformation is discussed. A single straight
crack is considered in the first subsection, and then followed by
multiple curved cracks in the second subsection. The content in
each subsection is outlined as follows. First, the concept of origin-
independence, a special property for M when the body is homo-
geneously stressed, is illustrated. Subsequently, the physical
meaning for Mc is interpreted. Finally, the feasibility of Mc for use
in characterizing both the material and the structural fracture be-
havior due to evolution of multiple curved cracks is illustrated.

4.1 A Single Straight Crack. For problems containing a
single straight crack, the results of M and Mc can be related to the
Jk-integrals as shown in Eqs. �6� and �7�, respectively. To illustrate
the property of origin-independence, an interesting feature under
the special condition when the body is homogeneously stressed,
we take the rubbery body as an infinite medium and subjected to
a uniform remote loading system. Under this condition, it is ob-
served that Jk

P=Jk
Q and the integration of Wn2 along the crack

surfaces vanishes due to symmetry. Therefore, the M-integral in
Eq. �6� and the Mc-integral in Eq. �7� become equivalent and both
reduce to

M = MC = lJ1
P = lJ1

Q �10�

Equation �10� implies that the value of M remains unchanged with
different selections of origin O of the reference coordinate system,
i.e., it is origin-independent in a homogeneously stressed infinite

medium.
Under the aforementioned special homogeneously stressed con-

dition, it is well known that the result of M �=Mc� in linear elas-
ticity can be physically related to the energy release rate due to
self-similar expansion of the crack �Herrmann and Herrmann �8��.
Furthermore, as illustrated in the authors’ previous work �Chang
and Peng �16�� under a more general condition �i.e., nonlinear
elastic media subjected to nonhomogeneous large deformation�,
the Mc-integral appears to be equal to twice the surface energy
required for formation of the whole crack. Since the latter physi-
cal interpretation is derived under such a general condition it is,
therefore, anticipated that Mc be feasible in characterizing the
structural fracture behavior due to presence of the crack.

4.2 Multiple Curved Cracks. We first take the special con-
dition when the N distributed curved cracks are located in an
infinite medium and subjected to uniform remote loads, as shown
in Fig. 3. It can be shown �Appendix B� that, under such a homo-
geneously stressed condition, the result of the M-integral is inde-
pendent of the origin O provided that the integration is performed
by including all cracks in a single remote contour �say, Do in Fig.
3�. This also indicates that M =Mc under this special condition.
Nevertheless, it should be noted that the value of M does in gen-
eral vary with respect to different selections of origin when the
body is nonhomogeneously stressed.

Still, the physical meaning of Mc can be interpreted in two
different aspects. First, it is well known that evaluation of Mc
yields summation of the driving work conjugate to expansion of
each crack tip relative to the geometric center C. This feature,
nevertheless, is associated with simultaneous expansion of all
crack tips and rarely occurs in reality. On the other hand, it can
alternatively be shown �Appendix C� that the result of Mc is
equivalent to twice the surface energy required for formation of
all the curved cracks �i.e., the change of potential energy due to
creation of the cracks�. The latter interpretation appears to be
more applicable in practice. Furthermore, it is noted that this char-
acteristic is derived under the general nonhomogeneously stressed
condition. This indicates that Mc can be used for characterizing
the degradation of structural integrity corresponding to formation
of the whole set of curved cracks.

5 Numerical Examples
Two numerical examples are presented in the following two

subsections. A uniformly loaded specimen �material characteris-
tic� is considered in the first subsection, and subsequently a non-
uniformly loaded problem �structural characteristic� is presented

Fig. 3 The integration contours for an infinite medium sub-
jected to uniform remote loads
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in the next subsection. The rubbery material behavior is modeled
with a neo-Hookean isotropic incompressible strain energy den-
sity function W �Marusak �17�� as

W = 97.2�I1 − 3� �unit: Pa� �11�

where I1 is the first principal invariants associated with the
Cauchy-Green strain tensor. In the following calculations, qua-
dratic finite elements are used for interpolation of the displace-
ment field. Also, since the material is treated as incompressible,
by directly using quadratic elements for interpolation of the pres-
sure field will result in an overconstrained numerical system. In
order to satisfy the requirement for numerical stability �usually
termed the “discretized LBB condition” �18��, the pressure field is
thus interpolated in terms of nonconforming linear elements with
reduced integration. In addition, note that no particular singular
elements are used throughout the study.

Although Mc can be physically related both to the energy re-
lease rate due to crack expansion and to the surface energy asso-
ciated with crack formation, only the validity of the latter will be
addressed.

5.1 Problem 1—Material Characteristic (Homogeneously
Stressed Condition). The object of this problem is to verify the
feasibility of using the origin-independent M �or, equivalently,
Mc� as a fracture parameter for the description of the material
degradation in a homogeneously stressed rubbery medium. To this
end, we consider a plane stress rubbery specimen containing a
number of densely �and randomly� distributed curved cracks, each
with a different length and orientation, as shown in Fig. 4. The
crack length is relatively small compared with the width w and
length B so that the finite width effect of the specimen can be
neglected. The specimen is subjected to an oblique uniaxial tensile
stress �� along the boundaries.

The analysis in this problem is organized as follows. First, the
effect of the local finite element modeling around the crack tips is
investigated. Next, the property of path-independence is exam-
ined. Subsequently, the origin-independence property of M in this
homogeneously stressed medium is investigated. Finally, the
physical interpretation of M is verified by comparing the result of
the integral with the energy difference due to formation of the
cracks.

For accuracy, it is required to compute the M-integral with a
high degree of precision. To investigate the effect of finite element
modeling around the crack tips, we construct various finite ele-
ment meshes by successive local h-refinements in the near-tip

region, with the size of the tip-element ranging from 2% to 10%
of the crack length. Although not depicted in detail here, the re-
sults obtained from the above different meshes show very good
convergence.

Three integration paths, each enclosing a different portion of
the same finite element mesh, are used in order to verify path-
independence of the calculation. The associated exterior contours
Do’s are depicted in Fig. 5. The results with respect to �
= �7.5,8�m under two loading conditions ��� ,�� are shown in
Table 1. While the M-integral is analytically path-independent,
rather minor differences are observed in the numerical results
from the three paths. This is because the equilibrium equations are
satisfied only weakly in the finite element formulation. The prop-
erty of path-independence, therefore, only holds weakly in finite
element calculations.

In order to show the property of origin-independence, three
coordinate systems located at different origins are selected. The
values of M with respect to the three choices of � under two
loading conditions are shown in Table 2. The numerical results
indicate that, even when the origin is chosen to be far away from
the cracks, deviations of M are observed to be under 2%. The
validity of origin-independence is thus verified.

To illustrate the physical meaning of the M-integral, we con-
sider the same specimen and take its uncracked state as a refer-
ence configuration. The values of the potential energy � associ-
ated with both the cracked and uncracked configurations are then
calculated by using finite elements. The surface energy due to

Fig. 4 A plane stress rubbery specimen containing multiple
curved cracks „Problem 1…

Fig. 5 Three contours, each encloses different portion of the
specimen, are used for the integration

Table 1 The results of M from three integration paths for Prob-
lem 1 „Pa-m2

… „Note: w=150 m, B=150 m, �„7.5,8…m, N=12…

path 1
�Fig. 5�a��

path 2
�Fig. 5�b��

path 3
�Fig. 5�c��

��� ,��= �400 Pa,60° � 22.72 22.75 22.91
��� ,��= �100 Pa,90° � 1.632 1.635 1.644
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formation of the cracks is calculated by evaluating the difference
of potential energy ��. The values of �� versus the number of
cracks N, under two loading conditions, are depicted in Figs. 6�a�
and 6�b�, respectively. Also shown in the figures is the FE results
of the corresponding M-integral. By comparing the values of M
and −��, the validity of the physical meaning of M as associated
with twice the surface energy is thus well demonstrated. As an
aside, it is noted that, while the value of M in the figures is
monotonically increasing with the number of cracks, the contribu-
tion from each crack is quite different in that the surface energy
depends upon the crack size, the crack orientation, and also the
stressed condition. Therefore, the relation between M and N does
not necessarily correspond to a smooth curve.

The validity of the correspondence between the origin-
independent M-integral �=Mc� and the surface energy for multiple
curved cracks in a homogeneously stressed infinite rubbery field is
numerically supported by the results from above. The results in
Fig. 6 reveal that M is a monotonically increasing function of the
crack density �i.e., the number of cracks in the specimen�. Also, M
essentially characterizes the effect due to interactions of the
densely distributed cracks. These observed features indicate that
application of M would facilitate the understanding of the degra-
dation of materials induced by the above fracture factors. Thus,
the M-integral furnishes the above information needed to obtain
the fracture toughness, which could be a material characteristic
and used to describe loss of material integrity caused by the irre-

versible evolution of curved cracks in a rubbery medium under the
action of large deformation. This implies that, with the concept of
M, a possible measure of damage parameters corresponding to
characterization for evolution of the cracks can, therefore, be
properly developed. Detailed discussions on such related issues
are, however, beyond the scope of this study.

5.2 Problem 2—Structural Characteristic (Nonhomoge-
neously Stressed Condition). The applicability of Mc for use in
nonhomogeneously stressed problems is illustrated in this ex-
ample. To this end, we consider a plane stress rubbery specimen
containing a number of densely �and randomly� distributed curved
cracks and subjected to a nonuniform loading system, as shown in
Fig. 7. Note that, as addressed in Appendix C, the relation be-
tween Mc and the surface energy is valid under the condition
when the crack length is relatively small compared with the speci-
men size. In order to investigate the size effect, three geometric
instances are presented in this problem. In the first instance �Fig.
8�a��, the crack size is relatively small compared with the size of
the specimen so that the boundary effect of the specimen can be
neglected. On the other hand, the specimen contains relatively

Table 2 The results of M wrt different �’s for Problem 1 „Pa-
m2

… „Note: w=150 m, B=150 m, N=12…

� �7.5,8�m �15,15�m �1000,1000�m

��� ,��= �400 Pa,60° � 22.72 22.68 22.43
��� ,��= �100 Pa,90° � 1.632 1.628 1.602

Fig. 6 The values of M „=Mc… versus the number of cracks
„Problem 1…. „a… „�� ,�…= „400 Pa, 60° …, „b… „�� ,�…
= „100 Pa, 90° …. „Note: w=150 m, B=150 m.…

Fig. 7 A plane stress rubbery specimen containing N cracks
under nonhomogeneously stressed state „Problem 2…

Fig. 8 Three geometric instances containing cracks of differ-
ent relative sizes „Problem 2…
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large curved cracks in the second the third instances �Figs. 8�b�
and 8�c��. The deformed finite element mesh in Fig. 9 shows the
response of the mid-sized specimen �Fig. 8�b�� under the action of
��1 ,�2�= �15,30�Pa, where the undeformed configuration is de-
picted in heavy lines.

We first examine the characteristic of origin-dependence. By
considering the case of five cracks �i.e., N=5�, the results of M
with respect to various coordinate origins for the three geometric
instances are shown in Table 3. These results show that the values
of M do depend upon �, as anticipated. Particularly, the
Mc-integral �i.e., �= �0,0�� is evaluated by locating the origin of
the coordinate system at the geometric center of all the crack tips.

Further, although not shown in detail here, the finite element
results for Mc appear to be path-independent. Also, the accuracy
of the computation is evident by good convergence observed in
the study of finite element meshes.

Numerical results of Mc corresponding to a different number of
cracks N for the three geometric instances �i.e., Figs. 8�a�–8�c��
are shown in Figs. 10�a�–10�c��, respectively. Also included in the
figures is the surface energy −�� corresponding to the formation
of the curved cracks. It is observed that, for the instances of rela-
tively small and mid-sized cracks �Figs. 10�a� and 10�b��, the
values of the surface energy are well consistent with �half� those
of Mc. This indicates that the surface energy can be appropriately
extracted from the result of the Mc-integral. As to the instance
when the crack lengths are relatively large �Fig. 10�c��, it is also
evident that Mc and −�� bear a very similar trend in character-
izing the effect due to the increase of N. Although some deviations
between the surface energy and �half� of Mc are observed �within
10%�, the Mc-integral still furnishes reasonable approximations in
predicting the surface energy.

The relation between Mc and �� for a nonhomogeneously
stressed body containing multiple curved cracks is evident by the
numerical results presented above. It is particularly noted that this
feature holds for problems containing strongly interacting cracks.
The feasibility of the proposed integral is thus appropriately dem-
onstrated. Based on this characteristic, we suggest Mc be used as
a fracture parameter for describing the degradation of structural
integrity caused by irreversible evolution of curved cracks in rub-
bery media. As an aside, note that the physical interpretation for

Mc is exactly valid for problems containing relatively small
cracks, and approximately satisfied for those with large cracks.

6 Conclusions
A fracture parameter Mc is presented for evaluating the surface

energy associated with the formation of multiple curved cracks in
a 2D rubbery body under the action of large deformation. The
parameter is defined by performing the conventional M-integral
along a contour enclosing all the cracks in the body, and originat-
ing the coordinate system at the geometric center of all the crack
tips. Physically, the results generated by Mc can be interpreted in
two different aspects. A well-known, but rarely occurred in reality,
feature is corresponding to the energy release rate conjugate to
expansion of each crack tip relative to the geometric center C.
Alternatively, Mc is shown to be equivalent to twice the surface
energy required for creation of all the curved cracks. The latter
interpretation, being more applicable in practice, is verified both
analytically and numerically. Note that, the relation is exactly
valid when the crack length is small compared with the size of the
specimen, and approximately satisfied for problems containing
relatively large cracks. Based on this characteristic it is, therefore,
suggested that Mc be practically used as a fracture parameter for
describing the degradation of structural integrity caused by the
irreversible evolution of curved cracks in rubbery media.

Due to path-independence, the Mc-integral can be performed
along an arbitrary outer contour, which is chosen to be far from

Fig. 9 The deformed mesh for the specimen in Fig. 8„b…

Table 3 The FE results of M wrt different �’s for Problem 2
„101 Pa-m2

…. „Note: „�1 ,�2…= „15,30…Pa, N=5.…

� �0,0�m�,Mc� �8.867,6.781�m �93.87,9.178�m

M �Fig. 8�a�� 1.749 1.231 	3.846
M �Fig. 8�b�� 1.782 1.026 	6.539
M �Fig. 8�c�� 2.005 0.746 	11.74

Fig. 10 The values of Mc versus the number of cracks for Figs.
8„a…–8„c…, respectively „Problem 2…

Journal of Applied Mechanics MAY 2007, Vol. 74 / 493

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



the crack tips. With this property, the complicated singular stress
field in the near-tip areas can be avoided in the calculation.

For the special condition when the body corresponds to a ho-
mogeneously stressed infinite medium, the M-integral is indepen-
dent of the coordinate origin. In this case, M is equivalent to Mc
and can be used for characterizing the material fracture behavior
associated with formation of the curved cracks.
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Appendix A: Relation Between M- and Jk-Integrals
In this section, the relation between M and Jk for a single

curved crack is established. To this end, we first approximate the
curved crack in Fig. 1 by considering a winding kinked configu-
ration with two tips P and Q. The kinked crack consists of m
segments, each of length li �i=1, . . . ,m� and with different orien-
tations, as shown in Fig. 11 �m=4 in this figure�. Still, with no
loss of generality, the last segment of crack lying parallel to the
x1-direction of the coordinate system originating at O. The posi-
tion vector at the geometric center C of the two tips is denoted �.

The M-integral associated with the whole crack is then defined
by performing Eq. �1� along the counterclockwise closed contour
D, which consists of 4 m curve segments as �1+L1

−+ �
i=2
m ��i

−

+Li
−��+�m + 1+�
i=0

m−2�Lm−i
++�m−i

+��+L1
+. Note that, by definition,

the curve segments �1, �m+1, �i
−, �i

+�i=2, . . . ,m� are shrunk onto
the two crack tips �i.e., P and Q� and the kinked points, respec-
tively. Also, Li

− and Li
+ �i=1, . . . ,m� are lying along the crack

surfaces �this limiting condition is not shown in Fig. 11�. When
the crack surfaces are traction-free, it can be shown �Chang and
Wu �15�� that M is related to the Jk-integrals as

M = �k��Jk
P − Jk

Q� + ��
i=1

m �
Li

++Li
−

Wnk d�i�	 +
1

2��i=1

m

lik��Jk
P

+ Jk
Q� + �

j=2

m ���
i=1

i−1

li1 −
1

2�
i=1

m

li1��
Lj

++Lj
−

Wnl d� j	 �A1�

where �i is the local coordinate system lying along the ith segment
and originated at the ith kinked point �particularly, �m originated
at tip Q�, lik is the length of the projection of li in the xk-direction.
By observing Eq. �A1�, it is noted that integration along the cir-
cular segments �i

− and �i
+ �i=2, . . . ,m� at the kinked points

makes no contribution to the result of M. This vanishing feature

explains why the kinked points are not included in positioning the
geometric center C.

By taking the number of segments m into infinity, the kinked
crack approaches asymptotically to the curved crack. Since the
kinked points are not involved in evaluating M, Eq. �A2� can then
be written as Eq. �3� in such a limiting case. Also, it is noted that
the geometric center for the curved crack is positioned in the same
manner as that for the kinked crack, i.e., at the center of the two
tips P and Q.

Appendix B: Origin-Independence of M Under Uniform
Remote Loads

The property of origin-independence for the M-integral has
been established for problems containing multiple straight cracks
in the authors� previous work �Chang and Peng �16��. In this
section, the validity of this property for curved cracks in homoge-
neously stressed rubbery media will be demonstrated.

For the infinite multi-cracked medium under uniform remote
loads, by arbitrarily originating the coordinate system at point O
and choosing a closed contour Do enclosing all the N cracks �e.g.,
N=5 in Fig. 3�, the M-integral �with respect to O� evaluated along
Do can be related to the Jk-integrals as

M = �
r=1

N 
�k
r��Jk

Pr − Jk
Qr� + ��

Lr++Lr−

Wnk
r d�r�	 +

lk
r

2
�Jk

Pr

− Jk
Qr� + ��

Lr++Lr−
��k

r −
lk

r

2
�Wnk

r d�r	� �B1�

where �r is the position vector for the rth crack �which is posi-
tioned at the geometric center of the two tips, Pr and Qr� with
respect to O, Lr+ and Lr− are the curve segments along the rth
crack surfaces, �r is the local curvilinear coordinate system origi-
nated at and originated at tip Qr, lk

r is the length of the projection
of lr in the xk-direction, and nk

r is the outward unit vector normal
to Lr++Lr−. Note that, due to the property of path-independence,
the integration can also be performed along another remote rect-
angular contour D�, with the value remaining unchanged.

Alternatively, by taking the geometric center of the first crack
as the reference point and applying the concept of path-
independence, we can rewrite Eq. �B1�

M = �
r=2

N 
��k
r − �k

l���Jk
Pr − Jk

Qr� + ��
Lr++Lr−

Wnk
r d�r�	�

+ �
r=1

N 
 lk
r

2
�Jk

Pr + Jk
Qr� + ��

Lr++Lr−
��k

r −
lk

r

2
�Wnk

r d�r	�
+ �k

l�
D�
�Wnk − �ijnj� �ui

�xk
�	ds �B2�

In the first term on the RHS of Eq. �B2�, the summation �from the
second to the Nth cracks� accounts for the interaction between the
first crack and the others. Further, since D� is chosen to be far
from the cracked region, the stresses and the strain energy density
W are thus homogeneous along the contour. Consequently, the
derivatives of the remote displacements with respect to the coor-
dinate components, ui,j, are also uniform. Therefore, the last term
of Eq. �B2� �i.e., the integration along D�� intrinsically vanishes
for both k=1 and 2 in that all the state variables are homoge-
neously distributed. This indicates that the result of M depends
only on the relative locations of the center of each crack, rather
than their absolute positions with respect to the origin O.

The origin-independent property can be further evidenced by
arbitrarily taking another point �say, the geometric center of all the
crack tips, C� as the reference. With this, Eq. �B1� can then be
alternatively written as

Fig. 11 The curved crack in Fig. 1 is approximated by a wind-
ing kinked crack with m segments „m=4 in this figure…
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��k
r − �k���Jk

Pr − Jk
Qr� + ��

Lr++Lr−

Wnk
r d�r�	�

+ �
r=1
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 lk
r

2
�Jk

Pr + Jk
Qr� + ��

Lr++Lr−
��k

r −
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r

2
�Wnk

rd�r	�
+ �k�

D�
�Wnk − �ijnj� �ui

�xk
�	ds �B3�

where � is the position vector of C. Again, the last term of Eq.
�B3� vanishes for both k=1 and 2. The first term, which takes
summation from the first to the Nth cracks, accounts for the inter-
action between the N cracks. In fact, it can easily be shown that
the first terms of Eqs. �B2� and �B3� are both equivalent.
The property of origin-independence for Eq. �B2� is, therefore,
demonstrated.

Appendix C: Physical Interpretation of Mc

The object here is to show that the result of the Mc-integral is
equivalent to twice the surface energy required for formation of
multiple curved cracks in a nonhomogeneously stressed rubbery
medium under large elastic deformation.

By considering the 2D rubbery body containing N distributed
curved cracks �N=5 in Fig. 2�, we arbitrarily choose an interme-
diate state during the process of crack evolution, as shown in Fig.
12�a�. At this stage, the crack system is instantly terminated at,
say, point Pe of the third crack. In Fig. 12�a�, the portions of the
crack system that remain to be formed are depicted in dashed
lines. The associated energy release rate G, due to a unit advance
at the point Pe along the original direction of the crack segment,
can be expressed as a decrease of the potential energy � as

G = −
d�

dl
= lim

�e→0
�

�e

�Wnk − Ti� �ui

�xk
�	ds �C1�

where l is the original crack length, �e is the integration contour
enclosing and shrinking onto Pe, and xk is the orientation tangen-
tial to the crack. By introducing a weighting function q, equation
�C1� can further be rewritten as

−
d�

dl
=�

De

�Wnk − Ti� �ui

�xk
�	q ds +�

Le−+Le+

Ti� �ui

�xk
�q ds

�C2�

where De=D1+D2+�a+Le−+�e+Le+. Here, q is a sufficiently
smooth scalar function taken as unity on �e �i.e., onto Pe in the
limiting case� and vanishing on D1, D2, and �a. Also, note that the
last term on the RHS of equation �C2� vanishes when the crack
surfaces are traction-free.

In order to accommodate the extension of crack length by an
amount of dl at Pe, we define an extended configuration relative to
the intermediate state of the cracked system. In this extended
state, all material points on �and within� �e, Le−, and Le+ trans-
lated by dl along the crack surfaces, with all other points remain-
ing in their original positions. The enlarged portion of these two
states in the local near-tip region is shown in Fig. 12�b�. We also
assume that there exists a one-to-one invertible coordinate map-
ping between these two states. Based on the mapping, a scalar
function q can then be defined as

q =
dxk

dl
�C3�

By taking Eq. �C3� and noting that the geometric and boundary
conditions remaining unchanged during the continuously varying
process of crack evolution, we thus conduct integration of Eq.
�C2� throughout the process of crack evolution as

− �� =�
−L/2

L/2 ��
De

�Wnk − Ti
�ui

�xk
� −

dxk

dl
ds	dl �C4�

where L is the total crack length, i.e., L=
r=1
N lr. Since the mea-

sure of the crack system is taken with respect to the geometric
center C, the integration is thus carried out by evaluation of G
with respect to l from −L /2 to L /2. Furthermore, we note that the
variation of energy release rate dG appears to be directly propor-
tional to the variation of crack length dl in the crack system. Such
linear relationship between dG and dl has been observed for rub-
bery problems containing a single straight crack �e.g.,�1��. In or-
der to further investigate the effect of dl for problems with mul-
tiple curved cracks, a series of finite element computations is
conducted in this research, where the values of G with respect to
varying original crack length are calculated. Although not de-
picted in detail here, the validity of this linear relation is evident
as long as the crack length is relatively small compared with the
size of the specimen.

Based on the linear relation between dG and dl, the integration
of Eq. �C4� then becomes

− �� =
1

2�
D

�Wnk − Ti
�ui

�xk
��xk ds �C5�

where D=
r=1
N Dr and �xk denotes the relative position of the

integration point with respect to the geometric center C Equation
�C5� indicates that the Mc-integral can thus be related to the en-
ergy difference �� as

MC = − 2�� �C6�

where �� corresponds to the surface energy associated with cre-
ation of all the cracks.

Fig. 12 „a… An intermediate state during evolution of the multi-
cracked system shown in Fig. 2. „b… The enlarged portion of the
extended configuration in the local near-tip area.
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The Lure of the Mean Axes
A variety of aerospace structures, such as missiles, spacecraft, aircraft, and helicopters,
can be modeled as unrestrained flexible bodies. The state equations of motion of such
systems tend to be quite involved. Because some of these formulations were carried out
decades ago when computers were inadequate, the emphasis was on analytical solutions.
This, in turn, prompted some investigators to simplify the formulations beyond all rea-
sons, a practice continuing to this date. In particular, the concept of mean axes has often
been used without regard to the negative implications. The allure of the mean axes lies in
the fact that in some cases they can help decouple the system inertially. Whereas in the
case of some space structures this may mean complete decoupling, in the case of missiles,
aircraft, and helicopters the systems remain coupled through the aerodynamic forces. In
fact, in the latter case the use of mean axes only complicates matters. With the develop-
ment of powerful computers and software capable of producing numerical solutions to
very complex problems, such as MATLAB and MATHEMATICA, there is no compelling reason
to insist on closed-form solutions, particularly when undue simplifications can lead to
erroneous results. �DOI: 10.1115/1.2338060�

1 Introduction
A variety of aerospace structures can be modeled as unre-

strained flexible bodies. Examples of these are missiles, space-
craft, helicopters, and aircraft. In formulating the equations of
motion, the methodology used depended largely on the preference
of the investigators. Because some of these investigations were
carried out decades ago when computers were inadequate, there
has been a tendency to simplify the formulations to an undue
extent. At the other extreme, in relatively recent days the tendency
has been to rely on large computer codes written for purposes
other than for the problem under consideration, resulting in very
cumbersome and inefficient solutions.

Surprisingly, the literature on dynamics of unrestrained flexible
bodies is not very abundant. Using essentially a Newtonian ap-
proach extended to finite bodies, Bisplinghoff and Ashley �1� de-
rived scalar equations of motion for flexible missiles. Making a
number of assumptions, they arrived at entirely decoupled equa-
tions for the rigid-body translations, greatly simplified equations
for the rigid-body rotations and decoupled equations in terms of
the “natural modes” for the elastic deformations. Among the fac-
tors contributing to the simplification of the equations of motion
we note the use of principal axes as body axes, the assumption
that the elastic deformations have a negligible effect on the mass
moments of inertia and that the independent equations for the
elastic deformation are the same as for an undamped multi-
degree-of-freedom system. The scalar equations of motion of Bis-
plinghoff and Ashley can be expressed in the compact vector-
matrix form

m�V̇ + �̃V� = F, J�̇ + �̃J� + �*�̇ + �̃�*� = M ,

M��̇ + �2�� = X �1�

where m is the total mass of the missile, V the velocity vector of
the origin O of the body axes xyz, � the angular velocity vector of
xyz, �̃ a skew symmetric matrix corresponding to � �Ref. �2��,
J=diag�Jxx Jyy Jzz� the inertia matrix, �*=�mr̃�dm, in which r̃ is

a skew symmetric matrix corresponding to the radius vector r
from O to a typical mass element dm and � is a matrix of natural
modes of vibration �referred to as shape functions in this paper, as
explained later�, � and � are vectors of generalized displacements
and velocities, respectively, M =diag�M11 M22¯Mnn� is a matrix
of “generalized masses” and F, M, and X are a force vector acting
on the whole missile, a moment vector about O acting on the
whole missile and a vector of generalized forces acting on the
generalized coordinates. We note that F, M, and X include all the
forces acting on the missile. These include the very important
aerodynamic forces and the thrust force during the powered flight.
The effect of the aerodynamic forces is to introduce dissipative
effects into the system, rendering the concept of natural modes
meaningless, as natural modes exist only in undamped, and hence
conservative systems. A comparison of Eqs. �1� with the rigorous
equations of motion of an unrestrained flexible body given later in
this paper will reveal glaring omissions.

Although the developments of Ref. �1� used a flexible missile
as a model, the implication was that the developments applied
equally well to flexible aircraft. Because the aerodynamic forces
result from a body moving through air, these forces are most
conveniently expressed in terms of local coordinates moving with
the body, i.e., in terms of the body axes xyz, which explains why
body axes were used in Ref. �1�. Body axes can be used as a
reference frame in the case of flexible spacecraft as well. In the
case of spacecraft, however, the translation of the origin of the
reference frame, generally coinciding with the system center of
mass, follows a predetermined orbit, so that there are no transla-
tional rigid-body degrees of freedom. Considering a spacecraft
consisting of a rigid core with flexible appendages simulating an-
tennas, Meirovitch and Nelson �3� defined the rotational motions
and elastic deformations by means of a reference frame attached
to the rigid core, and hence to the undeformed spacecraft, in es-
sence using body axes. However, the use of body axes is not a
uniform practice in the case of flexible spacecraft. Indeed, con-
tending that in general spacecraft do not possess rigid cores,
Canavin and Likins �4�, argued in favor of using a “floating ref-
erence frame,” referred to as a “Tisserand frame,” or “mean axes
frame.” This argument is not very convincing, however, as there is
no denying that all flexible bodies possess an undeformed state. At
any rate, the mean axes were defined by Canavin and Likins by
setting the internal angular momentum relative to the origin of the
reference frame, made to coincide with the system mass center, to
zero. In terms of our notation, this amounts to

1Author to whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received July 26, 2005; final manuscript
received April 18, 2006. Review conducted by N. Sri Namachchivaya. Discussion on
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of
Applied Mechanics, Department of Mechanical and Environmental Engineering,
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be
accepted until four months after fianl publication of the paper itself in the ASME
JOURNAL OF APPLIED MECHANICS.

Journal of Applied Mechanics MAY 2007, Vol. 74 / 497Copyright © 2007 by ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



�
m

r̃udm = 0 �2�

where r̃ is a skew symmetric matrix corresponding to the radius
vector r and u is the elastic displacement vector. They correctly
identified Eq. �2� as three scalar constraint equations to be im-
posed on u. Then, they discuss at length the nature of the con-
straints and ways of satisfying them. The example model consists
of two beams connected at one end to a hinge with a torsional
spring and free at the other end. Because the model is not really
representative of spacecraft and the discussion of the constraints
satisfaction is rather laborious, we do not pursue the subject at this
point but return to it later in this paper.

Whereas one can make a case for the use of mean axes for
flexible spacecraft, provided the constraint equations are handled
correctly, it should be pointed out that spacecraft operate in a
much more benign environment than aerial vehicles. Indeed, they
do not have to cope with one of the most significant problems in
aerial vehicles, namely, the aerodynamic forces. In the case of
aerial vehicles, any advantage that may accrue due to the inertial
decoupling resulting from the use of mean axes is negated by the
persistent coupling caused by the aerodynamic forces.

Worthy of notice due to the use of mean axes is a report by
Dusto et al. �5�, leading to a system of computer programs, named
FLEXSTAB, for evaluating the stability of arbitrary flexible aircraft
configurations in subsonic and supersonic flights. In addition to
the common body axes, they used mean axes for deriving the
equations of motion and “fluid axes” for describing the aerody-
namic forces. They defined the mean axes by

�
m

udm = 0, �
m

r̃udm = 0 �3�

and recognized that Eqs. �3� represented six constraint equations.
To satisfy Eqs. �3�, they used Lagrange’s multipliers �2�. It should
be noted that one of the disadvantages of Lagrange’s multipliers
method is that it introduces new unknowns into the equations of
motion, in the case at hand six of them. There are two issues
casting doubts on the validity of the results. The first is the fact
that they used two different reference frames, one for the aircraft
motions and one for the aerodynamic forces, without transforming
from one to the other, and the second concerns the way
Lagrange’s multipliers method was applied. Of course, these is-
sues are dwarfed by the fact that any decoupling resulting from
the use of Eqs. �3� is only illusory in the presence of aerodynamic
forces.

Using different reasoning, Eqs. �3� can lead to similar results in
Ref. �1� as those obtained in Refs. �4,5�. Indeed, without any
reference to mean axes, Ref. �1� interprets Eqs. �3� to mean that
the natural modes of vibration are orthogonal to the translational
and rotational rigid-body modes. In Refs. �4� they imply that the
angular momentum due to the elastic deformations is zero, and in
Ref. �5� that the linear and angular momenta are zero. Of course,
they all imply that the system is undamped and that all motions,
rigid and elastic, are small. This is hardly the case in general, as
the aerodynamic forces are dissipative in nature and the rigid-
body motions tend to be large.

The concept of mean axes was eagerly embraced by a variety of
investigators in the belief that its use is likely to result in signifi-
cant simplification of the equations of motion. In particular, it was
believed that the use of mean axes would reduce coupling, thus
resulting in independent equations for the rigid body translations,
rigid body rotations, and elastic deformations. This belief turns
out to be mistaken, as the disadvantages resulting from the re-
quirement to satisfy the constraint equations, Eqs. �3�, far out-
weigh any apparent advantages that might accrue from the elimi-
nation of some inertial coupling terms. Indeed, as pointed out
above, there is no real decoupling, as the equations remain
coupled through the aerodynamic forces. In fact, as shown later in

this paper, the use of mean axes not only makes matters more
complicated but in some cases it can render the formulation at
odds with the physical reality.

Whatever advantages or disadvantages accrue from the use of
mean axes, the procedures used in �4,5� are essentially correct.
Unfortunately, the same cannot be said about the subsequent in-
vestigations, as at some later time the concept of mean axes was
invoked but not really used. Indeed, some later investigators
latched onto the notion of mean axes to drop most inertial cou-
pling terms from the equations of motion while failing to enforce
the constraints embodied by Eqs. �3�. In fact, some of the inves-
tigators did not even give the definition of the mean axes.

Typical of investigators regarding the mean axes, Eqs. �3�, as a
vehicle to drop the coupling terms with impunity are Nydick and
Friedmann �6� and Friedmann, McNamara, Thuruthimattam and
Nydick �7�, where the first is a conference presentation and the
second is basically a journal version of the first. Indeed, profess-
ing to use the mean axes, when in fact they did not, as well as
invoking a variety of other assumptions, and confining themselves
to the case of steady level cruise, they obtained the greatly sim-
plified equations of motion

m�V̇0x + qV0z� = X − mg sin � ,

m�V̇0z − qV0x� = Z + mg cos �, jyy
�0�q̇ = M

Mg�̈ + Cg�̇ + �Kg −�
D

��T�̃T�̃�dD�� =�
D

�r̃T�̃T�̃�dD + Q̂

�4�

in which m is the total aircraft mass, V0x the forward velocity, V0z

the plunge velocity, q the pitch velocity, � the pitch angle, jyy
0 the

mass moment of inertia about the pitch axis y, assumed to be
constant, X, Z, and M are associated forces and moment, including
those due to aerodynamics, Mg, Cg, and Kg are “generalized”
mass, damping and stiffness matrices, respectively, � is a vector
of generalized elastic coordinates, � a “modal” matrix, �̃ a skew
symmetric matrix derived from the angular velocity vector �

= �0 q 0�T and Q̂ a generalized force density vector. Equations �4�
are even simpler than they may seem, and we note that the first
three are scalar equations and the fourth is a vector equation, as
they can be solved independently for the rigid-body translations,
rigid-body rotion, and elastic displacements. Indeed, first the third
of Eqs. �4� can be solved for the pitch velocity q, and hence for
the pitch angle �, then the first and second can be solved for V0x
and V0z and finally the fourth can be solved for �. However, there
are several problems with this proposition. In the first place, al-
though the authors do list the definition of the mean axes, Eqs. �3�,
they make no attempt to enforce the constraints imposed by them,
which can have disturbing implications. Moreover, there is no
indication that the aerodynamic forces were ever expressed in
terms of mean axes components, nor is there any hint that the
aerodynamic forces keep the equations coupled, thus preventing
independent solutions of the equations for the rigid body transla-
tions, rigid body rotations and elastic deformations.

It is clear from �6,7� that the objective is an aeroelasticity analy-
sis, which calls for very simple equations of motion. Yet, the
papers begin with a formulation capable of describing the dynam-
ics and control of maneuvering flexible aircraft �8,9�, a very com-
plex problem, and proceed to strip away the elaborate formulation
reducing it to Eqs. �4�. In the process of reducing the equations of
motion in terms of quasi-coordinates, the authors of �6,7� get
tripped by the misuse of mean axes. It appears that the authors of
�6,7� would have been better served by beginning directly with
aeroelasticity equations rather than with the complex formulation
of Ref. �8�. To indicate where �6,7�, went wrong and to highlight
some possible negative implication of the use of mean axes, the
correct use of the mean axes is discussed later in this paper.
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The use, and sometimes abuse, of the concept of mean axes is
not confined to missiles, spacecraft, and aircraft. Indeed, abuse of
the concept can be found in the case of helicopters as well. From
a dynamicist’s point of view, helicopters can be regarded broadly
as consisting of three parts, the main rotor, the tail rotor and the
fuselage, all acting together as a single dynamical system. Of
these, the main rotor is by far the most critical part, although a
helicopter could not function properly without a tail rotor. Indeed,
in the absence of a tail rotor to counteract the angular momentum
of the main rotor, the fuselage would spin in a sense opposite to
that of the main rotor. The equations of motion for helicopters can
be derived by modifying the approach used for aircraft, modifica-
tions made necessary by the fact that helicopters possess spinning
rotors. However, this is not the approach used by Cribbs, Fried-
mann and Chiu �10�, who consider the problem of a “coupled
helicopter rotor/flexible fuselage aeroelasticity model” in a very
unorthodox way as far as dynamics is concerned. In particular,
they concentrated on the fuselage alone and invoked the use of
mean axes to derive decoupled equations for the fuselage rigid-
body translations, rigid-body rotations and elastic deformations,
as follows:

mfẍcm = F, Jf�̇ + �̃Jf� = Mcm, Mq̈e + Kqe = Q �5�

where mf is the total mass of the fuselage, xcm the displacement
vector of the fuselage mass center, F the resultant vector of all
external forces acting on the fuselage, Jf the inertia matrix of the
fuselage, � the angular velocity vector of the fuselage, Mcm the
resultant vector of all external moments about the fuselage mass
center, M and K are mass and stiffness matrices for the fuselage,
qe is a vector of generalized coordinates and Q a vector of gen-
eralized forces for the fuselage. Equations �5� are very strange in
several respects. In the first place, they are for the fuselage alone,
while insisting that the main rotor was coupled to the fuselage. To
this end, they referred to some “equations of equilibrium” derived
for the main rotor in a NASA CR dated 22 years earlier, without
explaining how equations of equilibrium derived separately for
the main rotor, equations not even given in Ref. �10�, are coupled
to equations of motion derived for the fuselage alone. Moreover,
the tail rotor is not even mentioned. Finally, it is clear that Eqs. �5�
are for a fictitious fuselage at best, as they were derived invoking
the use of mean axes, when in fact the mean axes were not used at
all.

Later in this paper, it is shown how the problem of helicopter
dynamics is to be approached.

2 Proper Formulation for the Dynamics of Aerospace
Structures

As discussed in the preceding section, the mean axes have been
portrayed as a useful tool in the treatment of such diverse aero-
space structures as missiles, spacecraft, aircraft, and helicopters. A
closer examination of pertinent investigations, however, paints a
different picture. Improper formulations of the equations of mo-
tion and/or misuse of the concept of mean axes do not inspire
much confidence in the usefulness of the approach. In this section,
we propose to contrast the approach based on misuse of mean
axes with a proper formulation of the same problem.

From Meirovitch �8�, the motions of a flexible body can be
described by means of a reference frame xyz �Fig. 1� fixed in the
undeformed body and known as body. Then, the rigid-body mo-
tions are defined as three translations and three rotations of the
body axes relative to the inertial space XYZ and the elastic defor-
mations as the displacements of points on the body relative to the
body axes. When expressed in terms of components along the
body axes, the rotational velocities are referred to as quasi-
velocities, and the corresponding vector is denoted by �. It is
shown in Ref. �8� that, when expressed in terms of body-axes
components, the translational velocities can also be treated as
quasi-velocities; they are arranged in the vector V. Note that, un-

like ordinary velocities, quasi-velocities cannot be integrated to
obtain displacements �2�.

Denoting by u and v the three-dimensional elastic displacement
and elastic velocity vectors, respectively, where u and v are mea-
sured relative to the body axes xyz, it is shown by Meirovitch
�Ref. 8� that the hybrid dynamical equations of motion in terms of
quasi-coordinates can be written in the compact vector-matrix
form

d

dt
� �L

�V
� + �̃

dL

�V
− C

�L

�R
= F

d

dt
� �L

��
� + Ṽ

�L

�V
+ �̃

�L

��
− �ET�−1�L

��
= M

�

�t
� �T̂

�v
� −

�T̂

�u
+

�F̂
�v

+ Lu = Û �6�

where explicit provision was made for damping, in which L is the

system Lagrangian, Ṽ and �̃ are skew symmetric matrices derived
from V and �, respectively, C is a matrix of direction cosines
between xyz and XYZ, R= �RX RY RZ�T is the radius vector from
the origin OI of XYZ to the origin O of xyz, E is a matrix relating

the symbolic angular velocity vector �̇= ��̇1 �̇2 �̇3�T to the angular

quasi-velocity vector �, T̂ is the kinetic energy density of the

body, F̂ is Rayleigh’s dissipation density function �11� and L is a
3�3 matrix of stiffness differential operators. Moreover, F, M,

and Û are generalized force vectors, which must be expressed in
terms of the same body axes components used to express the mo-
tion variables. They can be obtained from the actual distributed
force vector f�r , t� and the discrete force vectors Fi�t� acting at the
points r=ri�i=1,2 , . . . , p� by means of the virtual work expres-
sion. Discrete forces can be treated as distributed by writing them
in the form Fi�t���r−ri�, where ��r−ri� are spatial Dirac delta
functions �11�, so that the virtual work can be written in the form

�W =�
D
	fT�r,t� + 


i=1

p

Fi
T�t���r − ri���RP

* dD �7�

where �RP
* is a virtual displacement vector whose expression can

be obtained by considering the velocity vector of a typical point
P in the body in terms of components along the body axes as
follows:

vP = V + � � �r + u� + v = V + �r̃ + ũ�T� + v �8�

where r is the radius vector from O to P and r̃+ ũ is the skew
symmetric matrix derived from the vector r+u. Using the analogy
with Eq. �8� with the term ũT� ignored as small compared to r̃T�,
we obtain

Fig. 1 Flexible body in space
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�RP
* = �R* + r̃T�� + �u �9�

which is the virtual displacement vector of point P �Fig. 1�, in
which �R* is the virtual displacement vector of the origin of xyz,
�� is the virtual angular displacement vector of xyz and �u is the
virtual elastic displacement vector of point P relative to xyz, all in
terms of body-axes components. Inserting Eq. �9� into Eq. �7�, we
obtain

�W =�
D
	fT�r,t� + 


i=1

p

Fi
T�t���r − ri����R* + r̃T�� + �u�dD

= FT�R* + MT�� +�
D

ÛT�udD �10�

where

F =�
D

fdD + 

i=1

p

Fi, M =�
D

r̃fdD + 

i=1

p

r̃iFi,

Û = f + 

i=1

p

Fi��r − ri� �11�

are the desired generalized forces.
Closed-form solutions of hybrid sets of differential equations

describing the dynamics of flexible aircraft is not within the state
of the art, so that one must be content with approximate solutions.
This implies invariably spatial discretization of the elastic vari-
ables �11�. We consider spatial discretization of the system by
assuming that the elastic variables can be approximated to a rea-
sonable degree of accuracy by series of space-dependent shape
functions multiplied by time-dependent generalized coordinates,
as follows:

u = ��, v = �� �12�

where �=��r� is a 3�n matrix of shape functions �11�, in which
n is the number of elastic degrees of freedom, � is an n-vector of
generalized coordinates and � is an n-vector of generalized ve-
locities. A common misconception is to refer to the entries of � as
“modes” when in fact they are merely shape functions. Of course,
one can always try to choose the shape functions as the eigenfunc-
tions of a somewhat related system, but that does not make them
modes. It should be noted that the system described by Eqs. �6� is
nonlinear and subject to viscous damping. Moreover, in the case
in which Eqs. �6� represent the equations of motion for a flexible

aircraft, F, M, and Û include aerodynamic forces. As a result,
even after linearization, any modes are likely to be complex,
whereas the entries of � are real functions. In the spirit of
Rayleigh-Ritz, it is shown by Meirovitch �11� that any set of func-
tions capable of describing any possible elastic deformation of the
system to a given desired degree of accuracy represents an accept-
able set of shape functions. However, the use of shape functions
represents a mere spatial discretization process resulting in a set of
ordinary differential equations.

Before discretizing Eqs. �6�, we consider Eqs. �8� and �12� and
write the two forms of the kinetic energy

T =
1

2�
D

�vP
TvPdD =

1

2
mVTV + VTS̃T� + VT�

D

�vdD

+ �T�
D

��r̃ + ũ�vdD +
1

2
�TJ�

+
1

2�
D

�vTvdD

�
1

2
mVTV + VTS̃T� + VT�̄�

+ �T�
D

��r̃ + ��˜��dD� +
1

2
�TJ�

+
1

2
�T�� � �13�

where

�̄ =�
D

��dD, S̃ =�
D

��r̃ + ��˜�dD ,

J =�
D

��r̃ + ��˜��r̃ + ��˜�TdD, �� =�
D

��T�dD �14�

in which S̃ and J are the matrix of first moments of inertia and the
inertia matrix, respectively, of Rayleigh’s dissipation function

F =�
D

F̂dD =
1

2�
D

cvTvdD �
1

2
�T�

D

c�T�dD� =
1

2
�TC�

�15�

where

C =�
D

c�T�dD �16�

is a damping matrix, in which c is a damping density function,
and of the strain energy

Vstr =
1

2�
D

uTLudD �
1

2
�T�

D

�TL�dD� =
1

2
�TK� �17�

where

K =�
D

�TL�dD �18�

is a stiffness matrix. Both C and K are symmetric. Then assuming
that the Lagrangian does not depend on R and �, which is true for
flying aircraft, the discrete counterpart of Eqs. �6� are simply

d

dt
� �L

�V
� + �̃

�L

�V
= F,

d

dt
� �L

��
� + Ṽ

�L

�V
+ �̃

�L

��
= M

d

dt
� �L

��
� −

�T

��
+ C� + K� = X �19�

in which, from Eq. �13�

�T

��
= − �̄TṼT� +�

D

��T��˜dD� −�
D

��T�̃2�r + ���dD

�20�

and

X =�
D

�TÛdD �21�

is the discretized generalized elastic force vector.
Finally, including some obvious kinematical identities and car-

rying out the indicated operations, we obtain the discretized set of
state equations
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Ṙ = CTV, �̇ = E−1�, �̇ = �

mV̇ + S̃T�̇ + �̄�̇

= �2�
D

���˜dD + mṼ + �̃S̃�� + F

S̃V̇ + J�̇ +�
D

��r̃ + ��˜��dD�̇ =
�
D

����˜�r̃ + ��˜� + �r̃

+ ��˜���˜�dD + ṼS̃ + S̃V˜

− �̃J�� + �̃�
D

��r̃

+ ��˜�T��dD + M

�̄TV̇ +�
D

��T�r̃ + ��˜�TdD�̇ + �� �̇ = − �̄TṼT� −�
D

��T�̃2�r

+ ���dD − 2�
D

��T��˜TdD� − C� − K� + X �22�

Next, we address the problem of helicopter dynamics. To this
end, we consider the typical helicopter configuration shown in
Fig. 2 and assume that the main rotor consists of nm equally
spaced blades and the tail rotor consists of n� equally spaced
blades. Then, by analogy with Eqs. �6� and using the notation of
Fig. 2, the helicopter equations of motion can be expressed in the
generic form

d

dt
� �L

�VO
� + �̃O

�L

�VO
− CO

�L

�RO
= FO

d

dt
� �L

��O
� + ṼO

�L

�VO
+ �̃O

�L

��O
− �EO

T �−1 �L

��O
= MO

�

�t
� �T̂f

�v f
� −

�T̂f

�u f
+

�F̂ f

�v f
+ L fu f = Û f

�

�t
� �T̂mi

�vmi
� −

�T̂mi

�umi
+

�F̂mi

�vmi
+ Lmiumi = Ûmi, i = 1,2, . . . ,nm

�

�t
� �T̂�j

�v�j
� −

�T̂�j

�u�j
+

�F̂�j

�v�j
+ L�ju�j = Û�j, j = 1,2, . . . ,n�

�23�

The derivation of explicit equations of motion would require a
great deal of perserverance and patience, and is beyond the scope
of this paper. To develop an appreciation of the nature of the
equations, however, we will outline some of the steps involved in
their derivation. The kinetic energy has the general expression

T =
1

2�
mf

V f
TV fdmf +

1

2

i=1

nm �
mi

Vmi
T Vmidmi +

1

2

j=1

n� �
mj

V�j
T V�jdmj

�24�

where, following an orderly kinematical procedure, the velocity
vectors of the individual components are given by

V f�r f,t� = VO�t� + �r̃ f + ũf�r f,t��T�O�t� + v f�r j,t�

Vmi�rmi,t� = CmiVM + �r̃mi + ũmi�rmi,t��T�Cmi�O + �M�

+ vmi�rmi,t�, i = 1,2, . . . ,nm

V�j�r�j,t� = C�jVT + �r̃�j + ũ�j�r�j,t��T�C�j�O + �T�

+ v�j�r�j,t�, j = 1,2, . . . ,n� �25�

in which

VM�t� = V f�rOM,t� = VO�t� + �r̃OM + ũf�rOM,t��T�O�t� + v f�rOM,t�

VT�t� = V f�rOT,t� = VO�t� + �r̃OT + ũf�rOT,t��T�O�t� + v f�rOT,t�
�26�

are the velocity vectors of the main rotor hub M and tail rotor hub
T, obtained by evaluating V f at M and T, respectively. Moreover,
Cmi and C�j are matrices of direction cosines between the main
rotor blade body axes xmiymizmi and the fuselage body axes xfyfzf
and the tail rotor blade body axes x�jy�jz�j and xfyfzf due to the
spin of the rotors; both Cmi and C�j depend explicitly on time. The
kinetic energy is obtained by inserting Eqs. �25� and �26� into Eq.
�24� and carrying out the indicated operations. A cursory exami-
nation of Eqs. �25� and �26� will reveal that the fuselage, main
rotor and tail rotor are all inertially coupled and so are the equa-
tions of motion. Furthermore, it is futile to look for mean axes
capable of changing this fact. Clearly, the use of mean axes for the
fuselage alone, which is the least critical part of a helicopter,
cannot be justified.

Although we expressed the fuselage stiffness in terms of a stiff-
ness operator matrix L f, this was merely symbolic because it is
not feasible to generate a differential operator for such a complex
structure as the fuselage. In practice, it is necessary to express the
fuselage stiffness, in the context of a spatial discretization process,
by means of a stiffness matrix generated by the finite element
method. A typical main rotor blade can be modeled as a thin beam
undergoing torsion about the longitudinal axis xmi and bending
about axes ymi and zmi. Denoting the displacement vector for blade
mi by umi= �	xmi uymi uzmi�T, the corresponding stiffness operator
matrix can be shown to have the form �11�Fig. 2 Flexible helicopter
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Lmi = �
−

�

�xmi
	GJmi�xmi�

�

�xmi
� 0 0

0
�2

�xmi
2 	EIzmi�xmi�

�2

�xmi
2 � 0

0 0
�2

�xmi
2 	EIymi�xmi�

�2

�xmi
2 � −

�

�xmi
	Pmi�xmi�

�

�xmi
� � �27�

where

Pmi�xmi� =�
xmi

Lmi

mi�
��Cmi�O + �M�zmi
2 
 d
 �28�

is the axial force on blade mi due to the centrifugal force caused
by the spin of the main rotor hub. The operator matrix L�j for the
tail rotor can be obtained from Eqs. �27� and �28� in an analogous
fashion.

Some of the other quantities, such as Rayleigh’s dissipation

function densities F̂ f, F̂mi, and F̂�j and the generalized forces F0,

M0, Û f, Ûmi, and Û�j can be obtained by analogy with those for
the aircraft, where the forces include the aerodynamic forces,
which are much more complicated than those for aircraft. In this
regard, it must be pointed out that the degree of complexity in-
creases significantly from hover to forward flight. Indeed, in for-
ward flight the blade velocity due to the hub rotation adds to the
fuselage velocity during half of the rotation and subtracts from it
during the other half. To compensate for this, the blade is made to
pitch accordingly.

Generic equations of motion for whole flexible helicopters can
be obtained by inserting Eqs. �24�–�28� into Eqs. �23� and carry-
ing out the indicated operations, which would involve a great deal
of symbolic manipulations, well in excess of those for flexible
aircraft. It is not difficult to see that the resulting equations are
likely to be extremely complex. Contrasting Eqs. �23�–�28� with
the formulation of Ref. �10�, Eqs. �5� of the present paper, one
concludes that the formulation of Ref. �10� is badly flawed, and no
sensible simplification of Eqs. �23�–�28� would reduce the equa-
tions of motion to an extent that would make them resemble Eqs.
�5�, not even vaguely. Hence, the contention that Eqs. �5� reflect a
“Coupled Helicopter Rotor/Flexible Fuselage Aeroelastic
Model…,” as the title of Ref. �10� implies, is more than question-
able.

3 The Use of Mean Axes
In deriving Eqs. �22�, a reference frame embedded in the unde-

formed body was used to define the rigid-body and elastic mo-
tions, as well as the forces, moments and distributed forces. This
choice seems only natural. As can be expected, the equations for
the rigid-body translations, rigid-body rotations and elastic defor-
mations are all coupled. There seems to be a belief that a different
choice of reference frame is able to reduce the coupling, and
hence the complexity of the formulation. We wish to examine this
proposition.

The inertial terms can be simplified to some extent by choosing
the body axes as the principal axes with the origin at the mass
center. In this case, we have

�
D

�rdD = 0, �
D

�r̃r̃TdD = J�0� �29�

where J�0� represents the diagonal matrix of the principal moments
of inertia of the undeformed body. Perhaps more extensive sim-
plifications can be achieved, at least at first sight, by using the
mean axes, defined by

�
D

�udD ��
D

���dD = �̄� = 0 ,

�
D

�r � udD =�
D

�r̃udD ��
D

�r̃��dD = �*� = 0 �30�

Inserting Eqs. �29� and �30� into the second half of Eqs. �22�, the
dynamical part of the state equations reduces to

mV̇ + �̄�̇ = �2�
D

���˜dD + mṼ�� + F

J�̇ +�
D

���˜�dD�̇ =
�
D

����˜�r̃ + ��˜� + �r̃ + ��˜���˜�dD

− �̃J�� + �̃�
D

��r̃ + ��˜�T�dD� + M

�̄TV̇ +�
D

��T��˜TdD�̇ + �� �̇

= �̄TṼT� −�
D

��T�̃2�r + ���dD − 2�
D

��T��˜TdD�

− C� − K� + X �31�

Contrasting Eqs. �31� with the simplified equations of Refs. �6,7�,
Eqs. �4� of the present paper, we conclude that Eqs. �4� do not
describe any real aircraft but some fictitious one that does not
exist, so that any analysis based on Eqs. �4� is an exercise in
futility.

4 Implications of Constraints Enforcement
The mean axes defined by Eqs. �30� represent an abstraction in

the sense that the axes are not as easy to visualize as the body axes
embedded in the undeformed body, let alone to determine them.
More important, however, is the fact that, from a dynamical point
of view, Eqs. �30� represent constraints imposed on the displace-
ment vector function u�r , t�, or the generalized coordinate vector
�. Indeed, Eqs. �30� represent six equations of constraint. Less
appreciated and seldom mentioned, if ever, is the fact that these
constraints must be enforced. Enforcement of constraints has cer-
tain implications well-worth exploring. There is nothing to be
gained by enforcing the constraints on Eqs. �4� because these
equations are flawed. Indeed, we can only gain insight into the
problem by enforcing the constraints on valid equations, namely,
Eqs. �31�.

For convenience, we confine ourselves to the discrete version of
Eqs. �30�; they represent constraint equations to be satisfied by the
n-dimensional generalized coordinate vector �. The implication is
that the components of � are not independent but subject to the six
scalar equations
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j=1

n

�̄ij
 j = 0, 

j=1

n

�ij
* 
 j = 0, i = 1,2,3 �32�

The six constraint equations, Eqs. �32�, can be enforced by means
of Lagrange’s multipliers �Refs. �2,5��, a somewhat tedious pro-
cess. They can be more conveniently enforced by means of a
coordinate transformation reflecting the fact that only n−6 of the
components 
1, 
2 , . . ., 
n are independent. To this end, we rewrite
Eqs. �32� in the form

A�ind + B�dep = 0 �33�

where

�34�

are 6� �n−6� and 6�6 matrices and �ind= �
1
2 . . .
n−6�T and
�dep= �
n−5
n−4 . . .
n�T are �n−6�-dimensional and six-dimensional
vectors of independent and dependent components, respectively.
Then, regarding the original n-dimensional vector � as a con-
strained vector, we can write

� = �c = 	�ind

�dep
� = 	 I

− B−1A
��ind = T�ind �35�

in which

T = 	 I

− B−1A
� �36�

represents an n� �n−6� transformation matrix. Note that choosing
the bottom six components of �c as the dependent component was
merely to demonstrate the procedure and is a valid choice only if
B is nonsingular. Inserting Eq. �35� into Eqs. �31� and multiplying
the third of the resulting equations on the left by TT, we obtain

mV̇ + �̄T�̇ind = �2�
D

��T�˜

inddD + mṼ�� + F

J�̇ +�
D

��T�˜

ind�dDT�̇ind

=
�
D

���T�˜

ind�r̃ + �T�˜

ind� + �r̃ + �T�˜

ind��T�˜

ind�dD

− �̃J�� + �̃�
D

��r̃ + �T�˜

ind�T�dDT�ind + M

TT�̄TV̇ + TT�
D

��T�T�˜

ind
T dD�̇ + �� *�̇ind

= − TT�̄TṼT� − TT�
D

��T�̃2�r + �T�ind�dD

− 2TT�
D

��T�T�˜

ind
T dD� − C*�ind − K*�ind + X* �37�

in which

J =�
D

��r̃ + �T�˜

ind��r̃ + �T�˜

ind�TdD

�� * = TT�� T, C* = TTCT, K* = TTKT, X* = TTX �38�

At this point, we must discuss two important issues, one con-
cerning the number of elastic degrees of freedom of the formula-
tion and the other, a more important one, whether mean axes
should be used at all. We recall that the dimension of the indepen-
dent coordinate vector �ind is n−6, so that using the mean axes as
a reference frame, there are only n−6 elastic degrees of freedom.
This is in contrast with the widespread notion that there are fully
n elastic degrees of freedom. A paradox arises when mean axes
are used and the flexibility is modeled by a number of shape func-
tions smaller than or equal to six, as in these cases the number of
elastic degrees of freedom is either negative or zero, which is a
physical impossibility. Moreover, either explicitly or implicitly,
the aerodynamic forces depend on the velocities V, �, and �,
which, according to the formulation leading to Eqs. �31�, are in
terms of components along body axes embedded in the unde-
formed body. Consistent with this, F, M, and X are in terms of the
same body axes. Clearly, if the velocities V, �, and � are referred
to the mean axes as stated in Nydick and Friedmann �6� and
Friedmann et al. �7�, then the aerodynamic forces in Eqs. �4� must
also be expressed in terms of components along the same mean
axes. Yet, there is no indication in Refs. �6,7� that the aerodynamic
forces were ever transformed from the original body axes to the
mean axes, which raises additional doubts about the validity of the
formulation. Hence, if one insists on using the mean axes as a
reference frame, then one must fully understand the implications
and honor the constraints consistently throughout. Merely invok-
ing the use of mean axes to eliminate terms without enforcing the
constraints to both motions and forces makes for an erroneous
formulation and results. In view of this, one must question the use
mean axes in the first place. Indeed, from Eqs. �37� we conclude
that the use of mean axes only results in added complications with
no visible benefits.

In the case of helicopters, the equations of motion, Eqs. �23�,
are not only significantly more complex than those for aircraft but
they also depend explicitly on time. Clearly, the use of mean axes
for helicopters is hard to comprehend.

Finally, one must wonder why it was necessary to begin with
such a complete and rigorous formulation as Eqs. �11� of Ref. �8�
and strip it down beyond recognition �see Eqs. �4� of the present
paper�.

5 Conclusions
The equations of motion for some flexible aerial vehicles, such

as missiles, aircraft, and helicopters tend to be very complex.
Decades ago, when computers were inadequate, the emphasis was
on analytical solutions, which prompted some investigators to re-
sort to undue simplification of the equations of motion, a practice
continuing to this date. In this regard, the concept of mean axes
seemed quite appealing, as in some cases it held the promise of
inertial decoupling of the equations of motion. This approach
turned out to be a blind alley for aerial vehicles, as the equations
of motion remained coupled through the aerodynamic forces.
Ironically, as shown in this paper, proper use of the mean axes can
only result in an increase in the complexity of the formulation.

The undue insistence on simplifying the equations of motion
through inertial decoupling seems to be a throwback to an age
predating the commonplace use of powerful computers. This is
particularly true in view of the availability of efficient computer
tools capable of implementing solutions to very complex prob-
lems. In this regard, we should mention MATHEMATICA for sym-
bolic manipulation and MATLAB for matrix manipulation. Indeed,
using MATHEMATICA in conjunction with a formulation in terms of
momenta rather than velocities, but entirely equivalent to the for-
mulation in this paper, Meirovitch and Tuzcu �12–14� not only
carried out time simulations of the rigid-body and elastic re-
sponses of flying aircraft but also implemented feedback controls
ensuring the flight stability of maneuvering flexible aircraft.
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Combined Torsional-Bending-
Axial Dynamics of a Twisted
Rotating Cantilever Timoshenko
Beam With Contact-Impact Loads
at the Free End
In this paper, consideration is given to the dynamic response of a rotating cantilever
twisted and inclined airfoil blade subjected to contact loads at the free end. Starting with
the basic geometrical relations and energy formulation for a rotating Timoshenko beam
constrained at the hub in a centrifugal force field, a system of coupled partial differential
equations are derived for the combined axial, lateral and twisting motions which includes
the transverse shear, rotary inertia, and Coriolis effects, as well. In the mathematical
formulation, the torsion of the thin airfoil also considers a very general case of shear
center not being coincident with the CG (center of gravity) of the cross section, which
allows the equations to be used also for analyzing eccentric tip-rub loading of the blade.
Equations are presented in terms of axial load along the longitudinal direction of the
beam which enables us to solve the dynamic pulse buckling due to the tip being loaded in
the longitudinal as well as transverse directions of the beam column. The Rayleigh–Ritz
method is used to convert the set of four coupled-partial differential equations into
equivalent classical mass, stiffness, damping, and gyroscopic matrices. Natural frequen-
cies are computed for beams with varying “slenderness ratio” and “aspect ratio” as well
as “twist angles.” Dynamical equations account for the full coupling effect of the trans-
verse flexural motion of the beam with the torsional and axial motions due to pretwist in
the airfoil. Some transient dynamic responses of a rotating beam repeatedly rubbing
against the outer casing is shown for a typical airfoil with and without a pretwist.
�DOI: 10.1115/1.2423035�

1 Introduction
Rotating beams, which have importance due to numerous prac-

tical usage such as jet engine blades, helicopter rotor blades, air-
plane propellers, satellite antennas, cutting-tool dynamics, and
other turbomachinery applications, have been investigated for a
long time. In order to analyze the dynamic characteristics of tur-
bine and compressor blades, it is a common practice to consider it
as a rotating radial cantilever beam. At the same time turbine and
compressor blade designers have long felt that this characteriza-
tion ignores some vital geometrical details of a real blade such as
lean and twist in the blade; which limits the applicability of such
simplified analytical models especially in the area of aerodynamic
flutter and rub-induced dynamic instabilities in the blade. One
such aspect with direct applications to turbine and compressor
blades is the vibration of pretwisted beams, which is commonly
referred as “twist-bend coupling characteristics of airfoils.” Dur-
ing a typical rub-induced vibration event, the blade-tip moving
with a tangential velocity of about 400–500 m/s makes a sudden
glancing contact �impacting at a very shallow incidence angle� on
the casing inner surface; which becomes the excitation mechanism
for initiating free vibration in the blade. This process is repeated
hundreds of times usually with one rub event every revolution.
The typical radial interference between the blade tip and the cas-
ing inner surface responsible for generating the periodic contact
rub load usually does not exceed 0.10–0.15 mm. After the earlier
works �1–4� done about 30 years ago on free vibration character-
istics of pretwisted beams simulating the airfoil, there is a consid-

erable current interest in applying the methods of nonlinear vibra-
tion to the dynamic stability of asymmetric airfoils cross sections,
especially rotating blades with aerodynamic excitations �5,6�. Dy-
namic stability of cantilever beams with varying levels of com-
plexity and different types of loading conditions has been inves-
tigated by Chen and Peng �7�, Hodges �8�, Sinha �9�, Chen and Ho
�10�, etc.

After the importance of transverse shear and rotary inertia in
the beam formulation was shown by Timoshenko �11�, many dif-
ferent aspects of his beam theory have been studied by several
authors over the past 40 years. Leissa and Jacob �12� were the first
ones to investigate the free vibration characteristics of cantile-
vered twisted beams and plates as a three-dimensional vibration
problem. Rosen �13� has presented a comprehensive review of
structural and dynamic aspects of pretwisted beams. Lin and his
coworkers �14� have performed dynamic analysis of nonuniform
pretwisted Timoshenko beam with elastic boundary conditions.
Petrov and Geraldin �15� have developed the finite-element theory
for a curved and twisted beams based upon a geometrically non-
linear formulation. Among the newer contributions, Tang and Yu
�16� have presented a generalized variational principle on the non-
linear theory of a pretwisted curved beam. Other recent contribu-
tions in this field �17–22� primarily deal with the free vibration
characteristics of the twisted rotating beams; which also include
the effect of transverse shear and rotary inertia. Different param-
eters of dynamic stability of twisted rotating beams under external
axial loads have been investigated by Chen and Keer �23�, Lee
�24�, Liao and Huang �25�, and Sakar and Sabuncu �26�. Yang and
Tsao �27� studied the dynamic stability of pretwisted blade due to
changing rotational speed. Temel �28,29� was the first one to ana-
lyze the transient response of a curved beam in the form of a helix
and subjected to time-dependent loads. Turhan and Bulut �30�
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focused on the dynamic stability of a rotating blade due to fluc-
tuations in the speed of the shaft. In the current work, our main
focus is on developing the governing dynamical equations to ana-
lyze the effect of rub-induced contact-impact forces at the free end
of the rotating blade modeled as a cantilever Timoshenko beam
with a pretwist �see Fig. 1�.

Starting from the basic deformation and velocity equations
along with the rotary inertia and gyroscopic effect terms, a com-
plete set of coupled dynamic equations has been derived for this
problem. The eigenvalue problem of these equations in a matrix
form is solved to determine the fundamental natural frequencies
for a combination of varying geometrical parameters to character-
ize the Timoshenko beam. We have also solved the corresponding
transient dynamics problem due to time-dependent contact-impact
loading at the free end for twisted and untwisted blades.

2 Rotating Cantilever Timoshenko Beam Formulation
for a Pretwisted Blade With Lean

For mathematical derivation, we consider that elastically de-
formable blades of outer radius “R” with the stagger angle “�r,”
which the blade root-chord makes with the engine axis, are
mounted on a rigid disk of hub radius “r” �see Fig. 2�a� and the
Nomenclature for a full list of notations�. We introduce two dif-
ferent local coordinate frames of reference attached to the rotating
blade called “axial-tangential-radial” with unit vectors as
�êa , êt , êr� and, “chord-normal-span” with unit vectors as
�êc , ên , ês�, respectively �see Fig. 2�b�� such that the longitudinal
axis of the equivalent Timoshenko beam passes through the center
of gravity �CG� of the beam cross section. The blade twist angle �
is defined such that the airfoil center of curvature in a fan or
compressor blade is towards the direction of rotation or spin-
velocity � whereas in a turbine blade it is in the opposite direc-
tion of �. It should be noted that in general due to lean in the
blade, the blade longitudinal axis in the span direction may not
necessarily coincide with the local radial direction. Thus, the ef-
fect of the sweep angle � in a blade with a lean about the local
radial direction is as follows:

� � 0: forward-swept blade

� = 0: radial blade

� � 0: backward-swept blade

In actual applications, the typical magnitude of the sweep-angle
� is relatively small which ranges from −15 to about 15 deg. For

such small values of �, one can assume that the normal to any
beam cross-section surface makes a constant angle with the local
radial direction �êr� passing through the centroid of that cross
section. In this analysis we further assume that due to twist in the
beam, the “stagger angle ��s�” changes linearly as we move along
the blade longitudinal axis from the root to the tip, such that

��s� = �r + s�� �1�

and the rate of twist

Fig. 1 A pretwisted Timoshenko beam and the local coordinate system

Fig. 2 „a… Schematic representation of an inclined rotating
beam with respect to the fixed global frame of reference as
viewed along the spin axis. „b… Airfoil cross section and its
equivalent Timoshenko beam representation as viewed from
the free end of the blade.
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�� =
�R − �r

L
=

��R − �r�cos �

�R − r�
�2�

The individual blades behave like a cantilever beam column of
span length “L” and are subjected to a centrifugal force field Fcf
generated due to the rotor spin velocity “�,” which for the deri-
vation purposes can be treated as an external force on the system.
Thus, the free end of the cantilever beam at s=L is subjected to a
generalized external force vector F and moment vector M such
that

F = FCêc + FNên + FSês

�3�
M = MCêc + MNên + MSês

The span direction component “FS �+ sign: tension and − sign:
compression�” of the external blade tip rub load vector F acting
along the longitudinal axis of the beam, henceforth is represented
by Fa. The tip rub force Fa is a dynamic contact load, which is
nonzero only during the tip travel through the rub zone on the
stator and will always have a �−� sign due to the contact load
being compressive in nature. The chord and normal �thickness
direction� components FC and FN are generated when friction at
the contact surfaces is also considered in the analysis. In the most
general case, the tip-rub force Fa may be acting eccentrically at a
point with its coordinate location as ��c ,�n� with respect to the
CG of the beam cross section at the tip. For thick blades, the value
of �n can be in the range of ��−d /2���n� �d /2�� depending upon
whether the blade is rubbing at the concave side or the convex
side of the airfoil. For thin blades, �n�0, and in the extreme case
of tip rub at the edge of the beam cross section, we will have,
�c= ± �c /2�. In addition, the blade is deformed in bending by ap-
plying bending moment about its chord in such a way that a typi-
cal cross section of the deformed blade produces the cross-section
rotation “�,” the lateral deflection “	” at the neutral axis, the axial
deflection “
” and the angle of twist as “�.” It is assumed that all
four components of deformation are functions of spatial coordi-
nate “s,” measured along the beam axis and the temporal param-
eter time “t.” It is also assumed that the minor principal moment
of inertia of the blade cross-section “I” coincides with the chord
direction so that under pure bending moment the blade lateral
deflection 	�s , t� takes place in the direction normal to the chord
with the neutral surface passing through the radial-chord plane.

For the analytical derivation, we will use the usual notations
such as, elastic Young’s modulus “E,” Poisson’s ratio “�,” shear
modulus “G=E /2�1+��,” material mass density “
,” and cross-
sectional area “A.” With respect to the stationary global cartesian

unit vectors �î , ĵ , k̂�, the local unit vectors attached to the beam
�êc , ên , ês�, rotating at a constant angular velocity � such that
�=�t, are related to each other as

� êc

ên

ês
� = �− sin � cos�� + �� cos � sin � sin�� + ��

− cos � cos�� + �� − sin � cos � sin�� + ��
sin�� + �� 0 cos�� + ��

	� î

ĵ

k̂
�

�4�
It is assumed that any warping of the airfoil cross section

caused by the torque varying along the span of the beam will be
negligibly small. A typical airfoil cross section is not symmetrical
about any of the principal axes and as such, in general, its “shear
center” may not necessarily coincide with the centroid �CG� of the
beam cross section. As a result, under the combined twisting and
bending deformation of the airfoil, it is assumed that the shear
center in the local coordinate system �chord-normal-span� is lo-
cated at �a ,b ,s� in such a way that its position vector is described
as

�a�êc + �b�ên + �s�ês �5�

Then, with �a ,b� as the shear center of the cross section and J0
as the centroidal polar moment of inertia of the cross section, the
effective polar moment of inertia for the twist motion can be
written as

J0 + A�a2 + b2� �6�
Here, we neglect the warping of the beam cross section and the

slope 	,s�s , t� of the transverse deformation of the beam is the sum
of the rotation ��s , t� and the rotation of the cross section due to
shear force Q�s , t� expressed as −�Q /�AG�, i.e.

	,s�s,t� = ��s,t� −
Q�s,t�
�AG

�7�

The angular velocity vector of the beam column due to spin
velocity � is

�� cos ��êc + �− � sin ��ên + �0�ês �8�
Under the small rotation assumptions, the rotation of the beam

cross section after the deformation can be expressed as a rotation
vector R such that

R = ���êc + ���ês �9�

Due to pretwist in the beam about the span axis �s-direction�
with the twist rate of ��, the derivative of the cross-section rota-
tion vector term R is derived using the chain rule as

dR

ds
= 
 ��

�s
êc + �

� êc

�s
� +

��

�s
ês

i.e.

dR

ds
= ��,s�êc + �����ên + ��,s�ês �10�

In the above equation, �,s and ��� represent the changes in the
curvature of the beam about the chord and normal axes of the
cross section due to bending about the two principal directions. In
the derivative of the rotation vector R the contribution of the term
containing unit vector component ên is only due to pretwist in the
beam. For example, in an untwisted beam with ��=0, a bending
moment about êc will not produce any curvature change about ên.
The deformation vector of any point on the Timoshenko beam
located at �x ,y ,s� in the local chord-normal-span coordinate sys-
tem caused by the four components of deformation �� ,	 ,
 ,�� is
obtained as

�− �y − b���êc + �	 + �x − a���ên + �
 − y��ês �11�
The position vector in the local chord-normal-span coordinate

system after deformation of any typical point at �x ,y ,s� can be
written as

�x − y� + b��êc + �y + �	 − a�� + x��ên + �s + 
 − y��ês

�12�
The time-dependent position vector of the rotating beam clamp-

ing point at the hub radius�r in the global fixed frame of refer-

ence is �r sin �î+r cos �k̂�. After some lengthy algebraic manipu-
lation, the position vector of the clamping point in the local
�êc , ên , ês� system is expressed as

�r sin � sin ��êc + �r cos � sin ��ên + �r cos ��ês �13�
Thus, the corresponding global position vector in the chord-

normal-span coordinate system after deformation of a typical
point at �x ,y ,s� on the beam can be written as

�r sin � sin � + x − y� + b��êc + �r cos � sin � + y + �	 − a��

+ x��ên + �r cos � + s + 
 − y��ês �14�

The time derivatives of the unit vectors �êc , ên , ês� are obtained
as
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ė̂c = � sin ��s�ês

ė̂n = � cos ��s�ês �15�
ė̂s = − � sin ��s�êc − � cos ��s�ên

Hence, the corresponding velocity vector V in a fixed global
frame of reference, for any typical point on a rotating beam lo-
cated at �x ,y ,s� with respect to the local �êc , ên , ês� system, is
derived as

V = �


,t − y�,t + �r cos � sin � + y + 	 − a� + x��� cos �

+ �r sin � sin � + x − y� + b��� sin �
�sin �

+ 
�s + r cos � + 
 − y��� − 	,t cos �

− �x cos � − a cos � − y sin � + b sin ���,t
�cos � � . î

− ��x sin � − a sin � + y cos � − b cos ���,t + 	,t sin �� . ĵ

+ �


,t − y�,t + �r cos � sin � + y + 	 − a� + x��� cos �

+ �r sin � sin � + x − y� + b��� sin �
�cos �

− 
�s + r cos � + 
 − y��� − 	,t cos �

− �x cos � − a cos � − y sin � + b sin ���,t
�sin � � . k̂

�16�

In a typical twisted beam formulation, it is a common practice
to characterize the bending mode deformation about the two prin-
cipal axes of the beam cross section �see the Appendix for details�
as a coupled deflection in �x−x� and �y−y� directions, separately.
In the present approach, we have introduced twist � of the beam
cross section about the longitudinal axis as an independent
degree-of-freedom. Recalling that in a typical beam formulation
inherent assumption of Iyy � Ixx along with �a ,b� being the shear
center of a nonsymmetric cross section and J0 its polar moment of
inertia, we have Ixx+ Iyy =J0+A�a2+b2� such that for shear center
coincident with CG

Ixx =��
Area

y2dA = I, Iyy =��
Area

x2dA � � and

�17�

J0 =��
Area

�x2 + y2�dA

The above relationship assumes that in an equivalent symmetri-
cal cross section under combined twist and bending, the shear
center would coincide with its centroid such that, a=0 and b=0. It

is obvious that when the shear center is not coincident with the
CG of the cross section, the contact forces will always generate a
moment at the free end. We will recall that with the shear modulus
G=E /2�1+��, the torsional rigidity for a thin cross section can be
written as “GJ” in which according to Timoshenko and Goodier
�31� for rectangular cross sections, the torsion constant J
= �1/3�cd3. Since, the flexural bending in a pretwisted beam
would inherently result in a twist-bend-coupling caused by the
components of the beam deformation in the two principal direc-
tions of the cross section, it is convenient to represent the flexural
rigidity term “EIyy” as a function of its torsional rigidity term GJ.
In addition, in such beams with thin cross sections the effect of
Poisson’s ratio � is negligible and as such the flexural rigidity
about the major principal axis EIyy in terms of its torsional rigidity
GJ can be approximated as

EIyy � �2GJ − EI� �18�

Thus, combining the kinetic energy “T” and the potential en-
ergy “U” due to bending, transverse shear, twisting and centrifu-
gal loads “Fcf” as well as the axial force due to contact “Fa” yields
the simplified form of Lagrangian “�” for the rotating Timoshen-
ko’s beam column as

� = T − U =
1

2�
0

L�
A



,t − y�,t + �r cos �rsin � + y + 	 − a� + x��� cos �

+ �r sin �rsin � + x − y� + b��� sin �
�2

+ ��s + r cos � + 
 − y��� − 	,t cos � − 
�x − a�cos �

− �y − b�sin �
��,t�2

���x − a�sin � + �y − b�cos ���,t + 	,t sin ��2
�

− �EI��,s�2 + �2GJ − EI������2 + GJ��,s�2 + AE�
,s�2

+ �AG�	,s − ��2 + �AG���	�2 + 2�AG���y − b���	,s − ��
+ 2�2GJ − EI����,s�� + �y − b��,s�

	
− Fa���	 + �x − a���,s�2 + ���	�2 + ��y − b��,s�2�
− Fcfcos ����	 + �x − a���,s�2 + ��y − b��,s�2� + 2�Facos �R�
,s

+ 2Fa��a − �c�cos ���s − L� + �b − �n�sin ���s − L����,s

− 2Fa��b − �n�cos ���s − L� − �a − �c�sin ���s − L�����	 − b��,s

	ds �19�

The Lagrangian equation is
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d

dt
� ��

�xi,t
� −

��

�xi
+

d

ds
� ��

�xi,s
� = Ri �20�

Using the Lagrangian � in the Lagrange’s equation yields the following 4 coupled partial differential equations of motion for �, 	, 
,
and �, respectively, in a local frame of reference attached to the rotating beam-column with angular velocity � as

�a� Bending moment balance due to rotation of the beam cross section about its minor principal axis �chord�

− EI�,ss − �AG�	,s − �� + �2GJ − EI������� + �,s + b�,ss� + �AG��b�

− Fa��a − �c�cos ���s − L� + �b − �n�sin ���s − L���,s − �Facos �R
,s

− 
I�2� + 
I�̇ sin �� + 
I�,tt + 2
I� sin ��,t = Tc�s,t�

�21a�

�b� Shear force balance in the normal direction through the cross section of the beam

− �AG�	,ss − �,s� + �AG��b�,s + �AG����2	 − Fa�	,ss − ����2	 − a�,ss�
+ Fa��b − �n�cos ���s − L� − �a − �c�sin ���s − L�����,s − Fcfcos ��	,ss − a�,ss�

− 
A�̇ cos �
 − 
A�2cos ��cos ��	 − a�� + bsin ���
− 2
A� cos �
,t + 
A	,tt − 
Aa�,tt = Qn�s,t�

�21b�

�c� Axial force balance due to membrane stretching along the neutral surface of the beam

− EA
,ss − 
A�2
 + 
A�̇�cos ��	 − a�� + b sin ��� + �Facos �R�,s

+ 
A�
,tt + 2� cos �	,t − 2��a cos � − b sin ���,t� = Qs�s,t�
�21c�

�d� Torque balance due to twist in the beam �neglecting the warping of the cross section�

− GJ�,ss + 
I�̇ sin �� + 
I�2 sin2 �� − �AG��b�	,s − ��
− �2GJ − EI�����,s − b�,ss� − �Fa + Fcfcos ����J0/A��,ss − a	,ss�
+ Fa��a − �c�cos ���s − L� + �b − �n�sin ���s − L�������2	 + �,s�
− Fa��b − �n�cos ���s − L� − �a − �c�sin ���s − L�����	,s − ��
+ 
J0�,tt − 
Aa	,tt + 
A�a2 + b2��,tt − 2
I� sin ��,t + 2
A��a cos � − bsin ��
,t

=Ts�s,t�

�21d�

In the above equations, Qn�s , t� and Qs�s , t� account for the
distributed lateral loads on the beam column in the thickness �nor-
mal� and in the longitudinal �span� directions, respectively. Simi-
larly, Tn�s , t� and Ts�s , t� account for the distributed bending and
twist moments on the beam column about the neutral �chord� axis
and longitudinal �span� directions, respectively. These distributed
external force and moments are caused due to centrifugal loads,
nonconstant spin-velocity and gas loads due to fluid flow over the
surface of the blade. For example, due to radial lean in the blade
by an angle � the centrifugal load acting at the CG of the beam
cross section generates distributed transverse forces and twist mo-
ments given by

Qn�s,t� = 
A�2�s + r cos ��sin � cos��r + ��s� �22�

Ts�s,t� = 
A�2�s + r cos ��sin ��b cos��r + ��s� − a sin��r + ��s��
�23�

Obviously, in a free-vibration problem, all nonhomogeneous
terms on the right-hand side of the above set of equations are set
to zero. The presence of the axial-force term Fa acting on the free
end of the beam in these equations contributes to the lateral as
well as torsional buckling of the Timoshenko beam. In the above
equations, it should be noted that in a rotating beam; its lateral
motion 	�s , t� is coupled with the longitudinal motion 
�s , t� and
its cross section rotation ��s , t� is coupled with the twist in the
beam ��s , t�. These couplings are due to Coriolis effects in the
dynamical system, which introduce velocity-dependent skew-
symmetric terms in the equations of motion. In a dynamics prob-
lem, Fa would become a function of time t and can be expressed

as Fa=F�t�. If F�t� is an oscillating force with a pulse frequency
of fp−Hz, it develops a parametric excitation in the system which
in a sinusoidal form is written as

Fa = F�t� = Fmaxcos�2�fpt� �24�

The set of four partial differential equations outlined in Eqs.
�21a�–�21d� describe the fully coupled dynamical characteristics
of a twisted rotating cantilever Timoshenko beam with axial load-
ing at the free end, which also includes the effects of nonconstant
rotational speed as well as the Coriolis forces. This is the first
attempt in any published literature to formulate the complex set of
equations in its entirety. The simpler forms of these equations
used by other researchers can easily be derived by setting certain

parameters equal to zero, such as by making �̇=0, these equa-
tions represent the dynamics of a beam rotating at a constant
speed. Previous derivations for the cantilever airfoil vibration in
coupled torsional-bending mode reported in the literature �1–4�
are simplified using Euler–Bernoulli beam formulation with �̇
=0, a=0, b=0, and Fa=0. Furthermore, by setting the sweep or
the radial lean angle �=0, one obtains the equations for a radial
rotating beam. Similarly, by setting the axial loading term Fa=0,
the corresponding equations for the free vibrations of a beam are
obtained. The contributions of axial motion can be disregarded by
dropping the terms containing 
 due to additional degree-of-
freedom in the longitudinal direction of the beam. In addition, by
setting the twist parameter ��=0, one can simplify the equations
similar to one used by Lin �19� for a beam with a constant stagger
angle. Similarly, by setting the hub radius term r=0, one can
derive the equations similar to one used by Oguamanam and Hep-
pler �18�. These equations can be further simplified to represent
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the coupled flexural and torsional vibrations of classical Euler–
Bernoulli’s beam as shown by Timoshenko et al. �11�. It has been
verified that the coupled flexural and torsional elastic buckling
equation due to axial forces and end moments also reduce to the
form similar to one derived by Timoshenko and Gere �32�. On
replacing the torsional rigidity term GJ by the relations expressed
in Eq. �18� one obtains a set of equations similar to that used by
Banerjee �21�.

3 Boundary Conditions and External Forces
The geometric boundary conditions for the Timoshenko’s beam

under consideration with four components of deformation
�� ,	 ,
 ,�� are as follows:

��0,t� = 0, 	�0,t� = 0, 
�0,t� = 0 ��0,t� = 0 �25�
The corresponding four natural boundary conditions at the free

end of the cantilever beam for �s=L� are expressed in terms of the
contact force vector F and moment vector M components �see
Eq. �3�� as

FC = 0, MN = 0 �26�

�bending moment�at s=L = MC = EI�,s�s=L = Fa��n + �csin���L��

�27�

�shear force�at s=L = FN = − �AG�	,s − ��s=L = − �Facos �R

�28�

�axial force�at s=L = FS = EA
,s�s=L = Fa �29�

�torque�at s=L = MS = GJ�,s�s=L

= �Fa���c − a�cos �R − ��n − b�sin �R� �30�

In a contact-dynamics problem, the tip load Fa along the lon-
gitudinal axis and its point of application on the beam cross sec-
tion ��c ,�n� will be time dependent. If the outer case radial tip-
clearance � and its radial stiffness Kcase need to be included in the
analysis then

Fa = 0 for �cos �
 + cos �Rsin ��	 + ��c − a�����s=L � �

�31�

and Fa = − Kcase�cos �
 + cos �Rsin ��	 + ��c − a��� − ���s=L

for �cos �
 + cos �Rsin ��	 + ��c − a�����s=L � � �32�

In order to account for the torsional deformation in the blade in
Eq. �31�, the positive sign on the chord is used, if the tip leading
edge of the blade is rubbing and a negative sign is used if the tip
trailing edge is in contact. It should be obvious that for the contact
load at the mid-point of the tip cross section, the contribution from
the twist parameter � would be zero. The external tip forces F
and moments M at the free-end of the beam act like point loads
at s=L, and as such mathematically with the use of Dirac’s Delta
function ��s−L� can be treated like a continuous or distributed
external force, which are written as

Tc�s,t� = Fa��n + �csin���L����s − L� �33a�

Qn�s,t� = − �Facos �R��s − L� �33b�

Qs�s,t� = Fa��s − L� �33c�

Ts�s,t� = �Fa���c − a�cos �R − ��n − b�sin �R���s − L�
�33d�

4 Rayleigh–Ritz Method and Ordinary Differential
Equations of Motion in Matrix Form

One can use several different methods such Galerkin’s or other
weighted-residual techniques to convert the set of partial differen-
tial Eqs. �21a�–�21d� in a set of ordinary differential equations.
Each technique imposes certain necessary boundary condition re-
quirements on the approximating functions. Here, we have em-
ployed the classical Rayleigh–Ritz method for this purpose, which
requires that as a necessary condition, the approximating function
must satisfy the geometric constraints arbitrarily but the force-
dependent natural boundary conditions may be relaxed. In the
ideal situation, they may satisfy all the geometric as well as force
boundary conditions of the present problem, however, it is not
necessary in general. If the approximating functions do not satisfy
all the force boundary conditions as well, then the integrated sum
of the unbalanced weighted-residual force and moment terms
must be set to zero at the free end. Thus, under these conditions,
the solution of the above set of equations can be assumed as

��s,t� = �
j=0

�

Uj�s�Wj�t� = �
j=1

�

�sin � js�Wj�t� �34�

��s,t� = �
j=0

�

Uj�s�Xj�t� = �
j=1

�

�sin � js�Xj�t� �35�

	�s,t� = �
j=0

�

Vj�s�Y j�t� = �
j=1

�
�1 − cos � js�

� j
Y j�t� �36�


�s,t� = �
j=0

�

Sj�s�Zj�t� = �
j=1

� 
 sin � js

� j
�Zj�t� �37�

where

� j =
�2j − 1��

2L

Hence, in order to apply the Rayleigh–Ritz’s method, we sub-
stitute the assumed deflection shape functions in such a way that
the shape function terms have proper dimensions of either length
or slope �radians� as necessary. In the above sets of equations, the
spatial derivative terms can be written as a function of a set of
differential operators. In addition, the discretized form of Eqs.
�21a�–�21d� is complete only when all the terms in the infinite
series for the displacement functions Sj�s�, Uj�s�, and Vj�s� are
considered, however, in a numerical technique they must be trun-
cated after a certain number of terms in the sequence. On applying
the Rayleigh–Ritz’s method with the assumed displacement func-
tions, one obtains a set of ordinary differential equations in terms
of time-dependent variables. The complete equations with the ho-
mogeneous as well as external force terms of these equations in a
matrix form can be written as

M� f̈�t�� + C� ḟ�t�� + K�f�t�� = �P�t�� �38�

Here M is the coefficient matrix for the acceleration-dependent
force terms generally known as inertia or the mass matrix, C is the
coefficient matrix for the velocity-dependent force terms which
can be due to damping or due to gyroscopic effects in the dynami-
cal system, and K is the coefficient matrix for the displacement-
dependent force terms generally known as the stiffness matrix. It
can be seen that in Eq. �38� the terms containing generalized
coordinates in the column-vector �f�t�� are X, Y, Z, and W�s,
which are dimensionless. Suppose, we consider “N” number of
terms for each of the four basic deformation trial functions out-
lined in Eqs. �33�–�36�, then for brevity we can introduce follow-
ing notations in lieu of the generalized coordinates �f�t��
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�M 	�
�Ẍ�N

�Ÿ�N

�Z̈�N

�Ẅ�N

� + �C 	�
�Ẋ�N

�Ẏ�N

�Ż�N

�Ẇ�N

� + �K 	�
�X�N

�Y�N

�Z�N

�W�N

�
= �P�t� �

4N

�39�

It is obvious that with the N number of terms used to represent
each of the four displacement functions viz. �� ,	 ,
 ,��, the total
number of degrees of freedom in the numerical scheme will be “
4N.” In the above equation, the right-hand side column-vector
�P�t�� representing all the external forces due to contact load Fa

acting along the beam-axis eccentrically at ��c ,�n� in the chord-
normal-plane at the free end of the cantilever beam column can be
expressed as

�P�t�� =

�P��t��N

�P	�t��N

�P
�t��N

�P��t��N

�
=


�Fa��n + �csin���L��U�L��
�− �Facos �RV�L��



A�2�
0

L

�s + r cos ��Sds + FaS�L��
N

��Fa���c − a�cos �R − ��n − b�sin �R�U�L��
�

�40�
Furthermore, the matrix terms used in Eq. �38� can be broken

into following separate matrices

M� f̈�t�� + �CD + CG�� ḟ�t�� + �KS + KF + K���f�t�� = �P�t��
�41�

where M is the mass matrix �symmetric�, a function of density 

and I, KS is the elastic stiffness matrix �symmetric�, a function of
E, G, I, etc., K� is the centrifugal stress-related stiffness-matrix as
a result of spin-velocity � �symmetric�, KF is the in-plane force-
dependent circulatory matrix due to contact force Fa acting along
the longitudinal axis at ��c ,�n ,L� of the beam-column �nonsym-
metric�, CD is the damping matrix due to the material internal
damping =�2� /��Ks, CG��� is the gyroscopic matrix �skew sym-
metric�, causes coupling of axial and lateral motions in the beam,
and �P�t�� is the column vector containing external forces on the
dynamical system.

Thus, the individual nonzero terms in the equivalent mass M,
damping C and stiffness K matrices are as follows:

�Ki, j� = − EI�
0

L

UiUj�ds + �AG�
0

L

UiUjds

+ �2GJ − EI�����2�
0

L

UiUjds − 
I�2�
0

L

UiUjds

�42�

�Mi,j� = 
I�
0

L

UiUjds �43�

�Ki,j+N� = − �AG�
0

L

UiVj�ds �44�

�Ki,j+2N� = − �Facos �R
�
0

L

UiSj�ds� �45�

�Ki,j+3N� = �2GJ − EI���
�
0

L

UiUj�ds − Ui�L�Uj�L��
+ �AG��b�

0

L

UiUjds + �2GJ − EI���b
�
0

L

UiUj�ds�
+ 
I�̇�

0

L

sin �UiUjds − Fa
�
0

L

��a − �c�cos ���s − L�

+ �b − �n�sin ���s − L��UiUj�ds − �a − �c�Ui�L�Uj�L��
�46�

�Ci,j+3N� = 2
I��
0

L

sin �UiUjds �47�

�Ki+N,j� = �AG
�
0

L

ViUj�ds − Vi�L�Uj�L�� �48�

�Ki+N,j+N� = − �AG
�
0

L

ViVj�ds − Vi�L�Vj��L��
− 
A�2�

0

L

cos2 �ViVjds

−

A�2

2
cos ��

0

L

�R2 − s2cos2 � − r2

− 2sr cos ��ViVj�ds + ����2�AG�
0

L

ViVjds

− Fa
�
0

L

ViVj�ds − Vi�L�Vj��L� − ����2�
0

L

ViVjds�
�49�

�Mi+N,j+N� = 
A�
0

L

ViVjds �50�

�Ki+N,j+2N� = − 
A�̇�
0

L

cos �ViSjds �51�

�Ci+N,j+2N� = − 2
A��
0

L

cos �ViSjds �52�
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�Ki+N,j+3N� = ��AG��b�
�
0

L

ViUj�ds − Vi�L�Uj�L�� − 
A�2�
0

L

cos ��b sin � − a cos ��ViUjds + a cos �

A�2

2 �
0

L

�R2 − s2 cos2 � − r2

− 2sr cos ��ViUj�ds − Fa�− a
�
0

L

ViUj�ds − Vi�L�Uj��L��
− ���

0

L

��b − �n�cos ���s − L� − �a − �c�sin ���s − L��ViUj�ds + ���b − �n�Vi�L�Uj�L� � �53�

�Mi+N,j+3N� = − 
Aa�
0

L

ViUjds �54�

�Ki+2N,j� = �Facos �R
�
0

L

SiUj�ds� �55�

�Ki+2N,j+N� = 
A�̇�
0

L

cos �SiVjds �56�

�Ci+2N,j+N� = 2
A��
0

L

cos �SiVjds �57�

�Ki+2N,j+2N� = − EA
�
0

L

SiSj�ds − Si�L�Sj��L�� − 
A�2�
0

L

SiSjds

�58�

�Mi+2N,j+2N� = 
A�
0

L

SiSjds �59�

�Ki+2N,j+3N� = − 
A�̇�
0

L

�a cos � − b sin ��SiUjds �60�

�Ci+2N,j+3N� = − 2
A��
0

L

�a cos � − b sin ��SiUjds �61�

�Ki+3N,j� = − �2GJ − EI���
�
0

L

UiUj�ds� + �2GJ − EI���b
�
0

L

UiUj�ds� + �AG��b�
0

L

UiUjds + 
I�̇�
0

L

sin �UiUjds

− Fa�−�
0

L

��a − �c�cos ���s − L� + �b − �n�sin ���s − L��UiUj�ds + �a − �c�Ui�L�Uj�L�

+ ���
0

L

��b − �n�cos ���s − L� − �a − �c�sin ���s − L��UiUjds � �62�

�Ci+3N,j� = − 2
I��
0

L

sin �UiUjds �63�

�Ki+3N,j+N� = − �AG��b�
0

L

UiVj�ds + cos �

aA�2

2 �
0

L

�R2 − s2cos2 � − r2 − 2sr cos ��UiVj�ds

− Fa����
0

L

��b − �n�cos ���s − L� − �a − �c�sin ���s − L��UiVj�ds − ���b − �n�Ui�L�Vj�L�

− ����2�
0

L

��a − �c�cos ���s − L� + �b − �n�sin ���s − L��UiVjds − a�
0

L

UiVj�ds � �64�

�Mi+3N,j+N� = − 
Aa�
0

L

UiVjds �65�

�Ci+3N,j+2N� = 2
A��
0

L

�a cos � − b sin ��UiSjds �66�

�Ki+3N,j+3N� = − GJ�
0

L

UiUj�ds + 
I�2�
0

L

sin2 �UiUjds

− cos �
J0
�2

2 �
0

L

�R2 − s2cos2 � − r2

− 2sr cos ��UiUj�ds− Fa�J0/A��
0

L

UiUj�ds �67�
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�Mi+3N,j+3N� = 
J0�
0

L

UiUjds + 
A�a2 + b2��
0

L

UiUjds �68�

All the terms of the matrices M, C, and K for a given beam
dimension and the assumed displacement functions outlined in
Eq. �38� can easily be determined by routine numerical integration
method such as Simpson’s rule. It should be noted that due to
pretwist in the beam, we have kept all sine and cosine functions of
the twist angle � inside the integration sign. During the spanwise
integration of terms in the matrices, we determine the local value
of ��s� by the relationship described in Eq. �1� as

��s� = �r + s�� �69�
Additionally, it can be seen that the rate of angular acceleration

�̇ enters into the equations as the stiffness term. The above non-
zero terms in the velocity-dependent coefficient matrix �Ci,j� are
all due to spin velocity � and represent the gyroscopic effect in
the system by being skew symmetric in nature, which in the gov-
erning equations are shown as CG. The material internal damping
can be taken into account as a function of the nondimensional
factor � of the critical damping of the beam material and the spin
angular velocity �. In this situation, the typical terms in the
damping matrix �Ci,j�D due to the material internal damping are
computed as functions of stiffness matrix terms �Ki,j�S containing
material parameters Young’s modulus E and shear modulus G as
well as shear coefficient � of the beam, which are written as

�Ci,j�D =
2�

�
�Ki,j�S �70�

5 Sample Results of Fundamental Frequencies
The corresponding M and K matrices have been used for deter-

mining the nondimensional natural frequency term � by solving
the following eigenvalue problem:

M� f̈�t�� + �KS + K���f�t�� = �0� �71�

where nondimensional frequency parameter � is defined such that

Natural frequency �N =
�

L2�EI


A
rad/s �72�

The eigenvalue solution of Eq. �71� yields natural frequencies
both for rotating as well as nonrotating ��=0,K�=0� conditions
of the beam. It should be recognized that there is a scarcity of
published data with all the parameters considered in the current
analytical model, such as a blade rotating with an angular velocity
�, radial lean �, initial twist ��R−�r�, coefficient of friction �,
longitudinal load Fa and its eccentricity ��c ,�n�, etc. Thus, in
order to demonstrate the accuracy of the present method, we have
compared the finite-element results and other limited amount of
published data with the natural frequency values yielded by the
much simplified versions of the current model.

5.1 Current Model Validation With Finite-Element
Results. In an attempt to validate the present model for its fre-
quency response, the analytically predicted frequencies are com-
pared with the finite-element results for a typical low-pressure
compressor blade with the following parameters:

L = span length of the airfoil �beam� =15.8 cm
c /L =aspect ratio =0.43
M = mass of the airfoil �
AL� =120 gm
� = angle of lean with respect to radius =0
I = moment of inertia of the cross section

�airfoil�
=0.04213 cm4

E = elastic Young’s modulus of the beam
material

=117 G Pa


 = beam mass material density =4.466 gm/cm3

��R

−�r�
= total twist in the blade =−25°

� = angular velocity of rotation �40 Hz� =251.327 rad/s

Here, the finite-element �FE� model �shown in Fig. 3� was ana-
lyzed using a commonly used commercial code called ANSYS. In
the FE model in order to ensure that the shear deformation effect
is included, we have used three brick elements through the airfoil
thickness.

For this particular blade, the first five vibrational mode finite-
element computed frequencies have been compared with those
determined by the current model and are shown in Table 1 for the
stationary condition and blades rotating at 2400 rpm, respectively.
As one can see that the correlation for the first five modes with the
FE model is very good with the maximum error limited to 3.32%.

5.2 Comparison of Current Model With Other Published
Data. We have also verified the current analytical model with the
results reported in published literature by other researchers as
well. Using the pretwisted Timoshenko beam finite-element ap-
proach Yardimoglu and Yildirim �20� have computed the frequen-
cies for the first four modes for a blade with the span-length L
=15.24 cm, chord c=2.54 cm, depth d=0.17272 cm, and a total
twist of ��R−�r�=45 deg. The material properties for this blade
such as, Young’s modulus of elasticity and the mass density are
E=206.85 G Pa and 
=7.8576 gm/cm3, respectively. The fre-
quencies reported by Yardimoglu and Yildirim for this blade and

Fig. 3 Finite-element model of the blade „L=15.8 cm… with a
total twist of „�R−�r…=−25 deg
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the corresponding results computed by the current analytical
model are shown in Table 2. It can be seen that their twisted beam
FE model fails to capture the first torsional mode frequency
completely.

Similarly, using the pretwisted Timoshenko beam bending
equation in two directions, Banerjee �21� reports the frequencies
only for the first three modes of vibration in his paper. In the
sample problem to validate the results of his twisted Timoshenko
beam model, Banerjee has computed these frequencies for a blade
with the span-length L=304.8 cm, cross-sectional area A
=127.667 cm2, aspect ratio �c /L�=0.667, flexural rigidity EI
=14.3485�1010 N cm2, and a total twist of ��R−�r�=40 deg.
The material properties for this blade such as, Young’s modulus of
elasticity and the mass density are E=70 G Pa and 

=2.7 gm/cm3, respectively. The frequencies reported by Banerjee
�21� for this blade and the corresponding results computed by the
current analytical model are shown in Table 2. Again, the analyti-
cal results from the current model for this particular case are in
very good agreement with the maximum error limited to 3.6%.

5.3 Sample Numerical Results. For the presentation of nu-
merical results from the current analytical model, the natural fre-
quencies of the beam are computed in terms of nondimensional

frequency parameter � for a very wide range of varying input
parameters such as aspect ratio �c /L�, total twist angle ��R−�r�,
slenderness ratio d̄, etc. These nondimensional results are shown
in Figs. 4 and 5, for the untwisted and twisted beams, respectively.
Figure 4 illustrates the drop in the values of nondimensional fre-
quency parameter � with the increase in the aspect ratio from 0.1
�long beam� to 1.0 �square plate� for a typical value of total twist
angle equal to zero �untwisted or flat beam�. These values for the
first two modes �first and second Flexural modes� match very well
with the previous cantilever flat plate results reported by Harris
and Crede �33�, shown here with dotted line. The two torsion
modes are also in reasonable agreement with the published data.
Due to inherent limitation of the current beam model, the two-
stripe vibrational mode for the flat plate shown by Harris and
Crede is not picked up by the eigenvalue solution.

Figure 5 illustrates the effect of aspect ratio �c /L� variation on
the changes in the values of the nondimensional frequency param-
eter � for a particular case of total twist angle of ��R−�r�
=45 deg. In order to compare the results on side-by-side basis
with those shown in Fig. 4, the values of the nondimensional
frequency parameter � has been plotted for an identical range of
increasing aspect ratio of �c /L� as the untwisted beam.

Table 1 Comparison of natural frequency results computed using present analytical method
versus finite-element results „L=15.8 cm,a=0, „�R−�r…=−25 deg,c /L=0.430…

Vibrational mode Current analytical model

FE model with eight-
noded brick

elements

% difference
Mode
number Mode shape

Nondimensional
�

Frequency
�Hz� Frequency �Hz�

Stationary frequency �0 rpm�
1 First flexural 3.6533 187.14 182 2.82
2 First torsion 13.8916 711.62 715 −0.47
3 Second flexural 22.8508 1170.57 1154 1.44
4 Second torsion 46.5902 2386.65 2310 3.32
5 Third flexural 61.2276 3136.47 3226 −2.78

Rotating frequency �2400 rpm�
1 First flexural 4.1945 214.87 213 0.88
2 First torsion 13.9608 715.16 735 −2.70
3 Second flexural 23.3270 1194.96 1182 1.10
4 Second torsion 46.6035 2387.33 2350 1.59
5 Third flexural 61.7840 3164.97 3263 −3.00

Table 2 Comparison of natural frequency results computed using present analytical method
versus other published results for nonrotating „�=0… twisted Timoshenko beam „Yardimoglu
and Yildirim „see Ref. †20‡…, Banerjee „see Ref. †22‡……

Vibrational mode Current analytical model
Results from

published literature

% difference
Mode
number Mode shape

Nondimensional
�

Frequency
�Hz�

Frequency
�Hz�

Yardimoglu and Yildirima �L=15.24 cm,�=0, ��R−�r�=45 deg,c /L=0.167�
1 First flexural 3.6206 62.61 61.8 1.31
2 Second flexural 17.8910 309.38 304.8 1.50
3 First torsion 44.5846 770.98 Not shown –
4 Twist-bend combination 55.0548 952.31 944.5 0.83
5 Third flexural 69.3112 1198.91 1193.0 0.50

Banerjeeb �L=304.8 cm,�=0, ��R−�r�=40 deg,c /L=0.667�
1 First flexural 3.8123 39.42 38.05 3.60
2 First torsion 11.5461 119.39 122.51 −2.55
3 Second flexural 22.7070 234.79 226.87 3.49

aSee Ref. �20�.
bSee Ref. �21�.
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The changes in the cantilever beam frequencies as a function of
total twist angle for both stationary and rotating conditions are
shown in Figs. 6–9 for aspect ratios�0.125, 0.25, 0.5, and 0.667,
respectively. In these figures, we have plotted the value of nondi-
mensional frequency parameter � for the first six modes. However,
as the twist angle � or the aspect ratio �c /L� changes, some of the
mode shapes also change as these lines cross each other. Due to
these mode-crossing conditions, for example mode 2 may be first
torsional mode for one twist angle, but it may become second

flexural mode for some other twist angle or aspect ratio. It is
observed that there is a small increase in the computed frequen-
cies for the flexural modes as the angle of twist increases, how-
ever, the fundamental frequencies for the modes associated with
the torsion about the span direction decreases rapidly with the
increasing twist. In addition, the presence of centrifugal force field
always tends to increase the frequencies with respect to its values
in stationary condition due to stress stiffening. This trend is simi-
lar to the one observed by Hu and his co-workers �22�.

Fig. 4 Change in cantilever beam frequencies with no-twist as a function of aspect ratio „slen-
derness ratio�0.01…

Fig. 5 Change in cantilever beam frequencies twisted at 45 deg as a function of aspect ratio
„slenderness ratio�0.01…
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It should be noted that the present derivation for a pretwisted
beam is completely different than other researchers’ formulation
�20,21,23� of using product moment of inertia terms such as,
Iyy , Ixy , Iyx, etc. instead of torsional constant term J and shear cen-
ter term �a ,b�. For a general asymmetric cross section such as a
typical airfoil or hollow blades and turbine blades with cooling
holes, the numerical computation of terms like Ixy , Iyx about the
CG of the cross section is extremely cumbersome. The current
approach is very convenient to analyze the dynamics of pretwisted
asymmetric thin cross section such as typical airfoil blades. In
addition, all the earlier researchers’ derivation disregards the cou-
pling effect of axial motion of the beam. Until now, all the axial-
bending coupling investigations have been limited to axial force

being treated as a buckling load on a column �23–26� rather axial
motion being considered as a separate degree of freedom. The
natural frequencies associated with the axial mode of vibrations
�
 degree of freedom� for the rotating Timoshenko beam have
been determined and reported by the author in his previous work
�9�.

6 Transient Analysis Results With Contact Impact at
the Free End

The transient motions caused by the periodic tip-impact load
along the longitudinal axis of the beam column initiates the high-
frequency axial mode of vibrations, which interacts with the low-

Fig. 6 Change in the twisted cantilever beam frequencies with aspect ratio
„chord/span…�0.125 as a function of the total twist angle „slenderness ratio�0.01,
angular velocity �=0.0 „stationary…—, angular velocity �=300 rad/s „rotating…- - -…

Fig. 7 Change in the twisted cantilever beam frequencies with aspect ratio „chord/span…�0.25
as a function of the total twist angle „slenderness ratio�0.01, angular velocity �=0.0
„stationary…—, angular velocity �=300 rad/s „rotating…- - -…
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frequency flexural-bending mode oscillations of the beam and
changes its dynamic response considerably during spin. The dy-
namic coupling of axial motion with the lateral deflection in a
spinning beam introduces the Coriolis forces, which have very
significant effect on the rub-induced vibration in a rotating ma-
chinery.

6.1 Analytically Predicted Transient Response Versus
Strain Gage Data. In order to establish the accuracy of the cur-
rent analytical model for its time-domain results, the numerically
computed transient dynamic response of a typical high-pressure
compressor blade is compared with the measured strain-gage data
from a rig test �34�. In this especially developed experimental rig,

it was observed that during a controlled periodic rub scenario each
rub-impact produced a somewhat different transient dynamic
characteristics than the one preceding rub event until the rub-
induced vibration of the blade reached to a limit-cycle response
under repeated rubs. For this part of the analysis using the sixth
order Runge–Kutta scheme, a direct-time integration of the equa-
tions of motion outlined in Eq. �39� is performed. The aspect ratio
�c /L� of the test blade is 0.659 with the span length L equal to
4 cm, and it is rotating at 16,500 rpm with the tip tangential ve-
locity of 400 m/s. The radial lean angle is �=0 for this blade and
the stagger angle is �r=�R=−45 deg. The bade tip rubs against a
72 deg circumferential rub zone with the contact-impact tip load-

Fig. 8 Change in the twisted cantilever beam frequencies with aspect ratio „chord/span…�0.5
as a function of the total twist angle „slenderness ratio�0.01, angular velocity �=0.0
„stationary…—, angular velocity �=300 rad/s „rotating…- - -…

Fig. 9 Change in the twisted cantilever beam frequencies with aspect ratio
„chord/span…�0.667 as a function of the total twist angle „slenderness ratio�0.01,
angular velocity �=0.0 „stationary…——, angular velocity �=300 rad/s „rotating…
– – –…
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ing applied at the rate of one pulse per revolution with 0.1 mm
radial interference. In the rig test, the 72 deg forced rub zone is
created by inserting a partial sector of a circumferential shoe in
the path of the moving blade tip. The transient analysis has been
carried out for four repeated impacts. The measured dynamic data
from a spanwise strain gage at the fillet of the airfoil root is
compared with the numerically computed strain time history near
the clamped end of the corresponding Timoshenko beam model
using the current analytical technique. From the two sets ofplotted
data illustrated in Fig. 10, it can be seen that the transient analyti-
cal results predicts the dynamic characteristics and the resulting
strain time history in the rubbing blade very well.

Numerically computed response shows highly nonlinear behav-
ior of the airfoil root strains. However, in terms of frequency
response, the analytical model responds at a slightly lower fre-
quency than the test data. This can be attributed to the nonlinearity
in the boundary conditions at the tip during the actual rub event.
In the rig test the tip is partially constrained during the rub,
whereas in the analytical model it is considered free with rub-
related forces as external loads on the system. In addition, both
the analytical and the test data illustrate as to how the magnitude
of the response builds up after the first rub, until it stabilizes after
about third rub. On this plot, the dynamic response of the blade as
it passes through the 72 deg circumferential rub zone, is shown by
rectangular shaded areas with legends as the first, second, third,
and fourth rubs. As the spinning blade tip comes out of the forced-
rub zone, the extensional wave in the blade travels up-and-down
its longitudinal axis with very high velocity, giving rise to large
Coriolis forces, which are oscillatory in nature. Mathematically,
this Coriolis force is a distributed load; which is represented by
the term such as −2
A� cos �
,t shown in Eq. �21b�, and its value
at the blade root is computed as the integrated sum over the span
length of the blade given by

Coriolis force at the airfoil root = − 2�
A�
0

L

cos��r + ��s�
,tds

�73�
The transient characteristics of this Coriolis force is shown in

Fig. 11, the magnitude of which at the airfoil root could be as high
as 3200 G. For this test blade, whereas the first-flex bending mode
frequency is 1600 Hz, the longitudinal wave frequency is about
33,400 Hz. These longitudinal stress waves, frequency of which is

more than 20 times higher than the flexural bending waves, can
generate intense heat at the mating surface of the blade root
�dovetail� with the disk, which has been observed to result into
local welding and fretting of the mating surfaces as well as severe
bearing damage even after short-duration heavy rubs. It should be
noted that the decay in the magnitude of the Coriolis force, out-
side the imposed rub zone during the free vibration of the blade, is
not due to damping in the system rather it is caused by the transfer
of kinetic energy associated with the longitudinal motion into the
lowest vibrational mode frequency, which invariably corresponds
to its first flexural bending mode motion. The transient vibratory
dynamic stresses in a rubbing airfoil is due to the interaction of
longitudinal motion �hyperbolic wave� with the lateral motion
�dispersive wave� of the beam, which in the case of rub-induced
dynamic instability results into fatigue-type damage to the blade.
Depending upon the eccentricity ��c ,�n� of the rub location at the
blade-tip cross section, these rub-related damages can range from
local tip curl due to plasticity to complete separation of the airfoil
at the blade root.

6.2 Effect of Pre-twist on Transient Response During
Tip-Rub. In this section, we will apply the current analytical
model to investigate the transient response of a twisted blade as
opposed to a similar blade but without any pretwist. For this in-
vestigation, we will use the blade parameters same as outlined in
Sec. 6.1 with two different values of the total twist, that is ��R

−�r�=0 deg and ��R−�r�=−45 deg. Here, we have compared the
dynamic responses of these two blades, subjected to the same
contact-impact loads during a typical rub event of one pulse per
revolution, in terms of their nondimensional lateral tip-deflection
�	 /L�. The main difference of external load application between
the results shown in the previous section to the current section is
that the previous section results were generated for the rig-test
conditions with displacement-controlled radial incursion of
0.1 mm, whereas in this section the results are for outer casing-
imposed radial force of Fmax=0.1 times of the Euler critical buck-
ling load applied at the free end of the beam. The numerical tech-
nique to implement the controlled radial incursion or, longitudinal
pulse of controlled magnitude in a transient simulation has been
discussed in detail in the author’s previous work �9� on the related
topic. The respective results of the lateral tip-deflection �	 /L� are
plotted in Fig. 12.

These time-history plots up to 2.5 m s clearly show that for a

Fig. 10 Comparison of measured airfoil root strain gage data „……… versus results from the present ana-
lytical model „—… during repeated radial incursion of 0.1 mm at the blade tip with 72 deg circumferential rub
zone for the first four rubs
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periodic contact-impact load of the same magnitude, the response
of an untwisted blade is monotonically increasing, whereas for
blade twisted at 45 deg the dynamic response shows a beating
pattern. The beating pattern of a quasi-periodic nature indicates
that this dynamic system is responding simultaneously at two dif-
ferent frequencies, which are very close to each other. It is ob-
served that for both twisted and untwisted blades, the dynamic

response until the fourth contact-impact pulse is almost identical.
In addition, after each pulse loading the twisted blade responds at
a slightly higher frequency than an untwisted blade.

7 Concluding Remark
The present analytical model captures the full dynamics of

pretwisted cantilever Timoshenko beam with combined torsional-

Fig. 11 Analytically computed Coriolis forces at the blade root during repeated radial incursion of 0.1 mm
at the blade tip with 72 deg circumferential rub zone for the first four rubs

Fig. 12 Comparison of analytically computed transient lateral tip displacements
for an untwisted beam „—… versus a 45 deg twisted beam „.....… during repeated
rubs „one pulse per revolution… at the blade tip with a periodic contact force of
magnitude Fmax=0.1Ã „Euler critical buckling load…
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bending-axial motion subjected to contact load Fa including Cou-
lomb friction � at the tip. The axial force Fa accounts for dynamic
buckling effect in the event of contact-impact load at the free end.
In the contact-impact scenario, the axial force Fa is a transient
load represented by time-dependent function F�t�. As shown in
the author’s previous work �9� on periodic tip-pulse-loading, the
general wave form of the dynamic force F�t� with a frequency of
fp−Hz along the longitudinal axis of the Timoshenko beam can
have many different time-dependent distributions, such as half-
sine wave, triangular pulse, rectangular pulse, full-cosine wave
with an offset, sawtooth profile, etc. The dynamic characteristics
of the twisted beam are expressed by a set of four partial differ-
ential equations. These equations contain not only terms due to
displacement-dependent forces rather they also include important,
but very rarely derived velocity-dependent forces as well. By in-
troducing four assumed displacement functions, the terms contain-
ing spatial coordinates s are eliminated from the equations by
using Rayleigh–Ritz technique. We have formulated every term
including forces due to Coriolis effect in the form of conventional
M, C, and K matrices. The main limitation of the current beam
model is its inability to obtain the classical two-stripe mode of the
rotating blade. In the airfoil blade dynamics, it is well known that
two-stripe mode is an important mode of vibration to be con-
cerned, especially for short airfoils with �c /L�→1. In order to
predict the two-stripe mode correctly, one must consider the
coupled beam bending formulation in two planes. It is worth not-
ing that the Timoshenko beam model developed here can be easily
expanded to the more general case of coupled bending deforma-
tion in two principal planes �x−x and y−y� as outlined in the
Appendix. We would like to point out that in the coupled two-
plane-bending formulation of the beam with contact-impact load-
ing, the number of independent degrees-of-freedom in the dy-
namical system suddenly jumps from 4 to 6; which makes it more
challenging to solve due to added complexity.

The equations of motion given in Eq. �39� are also integrated by
the Runge–Kutta method to obtain the transient dynamic response
in the time domain under different types of contact-impact loading
at the blade tip. For accurate computing of the beam dynamic
deformations associated with very high strain rates and other non-
linearities, the direct integration of equations of motion is a much
preferred technique, which is also used for determining the rub-
induced dynamic instability of rotating twisted blades. Using the
current analytical model, we are able to predict the transient re-
sponse of a rotating blade subjected to repeated rub impacts;
which depending upon the contribution of various parameters
such as rotational speed �, coefficient of friction �, longitudinal
contact load at the blade-tip Fa, load eccentricity ��c ,�n�, etc., can
make a typical rub either unstable by showing a growth in the
amplitude of lateral oscillations or turn into a stable rub as a
limit-cycle response.

Nomenclature
�a ,b� � x-coordinate and y-coordinate of the shear

center, respectively
A � cross-sectional area of the beam or blade
c � chord length of the blade airfoil cross

section
C � general coefficient matrix for velocity-

dependent forces
CD � damping matrix �symmetric�
CG � gyroscopic matrix �skew symmetric, causes

forward and backward frequency shift in
the blade�

�Ci,j� � typical ith row and jth column term in the
velocity-dependent matrix

d � depth of the blade airfoil cross section

d̄ � slenderness ratio of the blade airfoil cross
section =�I /AL2

�êa , êt , êr� � unit vectors in the local axial-tangential-
radial system

�êc , ên , ês� � unit vectors in the local chord-normal-span
system

E � Young’s modulus of elasticity of the blade
or beam material

EI � flexural rigidity of the blade cross section
about local x-axis �minor principal
direction�

EIyy � flexural rigidity of the blade cross section
about local y-axis �major principal
direction�

fp � pulse frequency of the blade tip contact-
load in Hz

F � generalized external force vector at the
blade tip

Fa � axial load on the blade �along the span di-
rection of the blade�

Fcf � centrifugal force at the blade airfoil CG
FC ,FN ,FS � components of external force vector at

blade-tip F due to contact
�f�t�� � column vector containing generalized time-

dependent displacement coordinates of the
dynamical system

F�t� � time-dependent axial load on the blade due
to contact impact �along the span direction
of the blade�

G � shear modulus of the blade or beam
material

GJ � torsional rigidity of the thin blade cross
section

Ixx , Iyy � principal moment of inertias of the blade
cross section

Jo � polar moment of inertia of the blade cross
section =�Ixx+ Iyy�

Kcase � radial stiffness of the outer case filler mate-
rial during rub

K � general coefficient matrix for displacement-
dependent forces

KF � in-plane force-dependent circulatory matrix
due to contact force Fa

KS � elastic stiffness matrix �symmetric�
K� � stress-stiffening or softening matrix due to

spin velocity �
�Ki,j� � a typical ith row and jth column term in

the stiffness matrix
L � span length of the cantilever blade

M � general coefficient matrix for acceleration-
dependent forces �symmetric�

�Mi,j� � typical ith row and jth column term in the
mass matrix

M � mass of the airfoil or, cantilever beam
�
AL�

M � generalized external moment vector at the
blade tip

MC ,MN ,MS � components of external moment vector at
blade-tip M due to contact

�P�t�� � column vector containing external forces on
the dynamical system �components of this
vector: P� , P	 , P
 , P��

Q�s , t� � shear force at span location s and time t
Qn ,Qs � distributed lateral loads on the beam in the

transverse and longitudinal directions �per
unit length�

R � blade tip radius
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r � blade root radius or disk outer radius
s � blade local coordinates in the span direction
t � time �s�

Tc ,Ts � distributed moments on the beam about the
chord and longitudinal directions �per unit
length�

T � total kinetic energy of the blade
U � total potential energy of the blade

Sj�s� ,Uj�s� ,Vj�s� � sinusoidal shape functions for blade defor-
mation �j=1,2 ,3 , . . . ,N�

V � velocity vector of any typical point on the
airfoil or beam

Wj�t� ,Xj�t� ,Y j�t�,
Zj�t� � time-dependent generalized coordinates for

dynamic deflection of the blade
�j=1,2 ,3 , . . . ,N�

Greek Symbols
� � sweep or blade lean angle with respect to

the radial direction
� � blade twist or stagger angle �rad�, i.e., angle

between the blade chord and the engine
axis �axis of rotation� at the blade tip

�r ,�R � twist angle of the blade cross section at
radii r and R

��R−�r� � total twist in the blade over the span length
L

�� � rate of pretwist of the blade in the span
direction

��s−L� � dirac delta unit impulse function for values
at s=L

� � radial clearance at the blade tip with respect
to the case inner radius

�c ,�n � contact load eccentricity in the local chord
and normal direction

� ,� ,	 ,
 � blade deformation due to twist, cross-
section rotation, lateral deflection, and lon-
gitudinal deflections, respectively.

� � angle of the rigid body rotation of the shaft
about the spin axis at time t from time 0 ��
=�t for constant angular velocity ��

� � shear coefficient in the Timoshenko beam
formulation

� � Lagrangian parameter
� � coefficient of friction between the blade tip

and the outer case
� � Poisson’s ratio of the blade material �d� /dt�
� � nondimensional beam frequency parameter

R � rotation vector for small rotations of the
airfoil cross section

� � critical damping parameter of the blade ma-
terial �nondimensional�

�N � natural frequency �rad/s�
� � blade spin velocity �rad/s���d� /dt�
� j � �2j−1�� /2L

Appendix: Effect of Beam Bending in Two Principal Di-
rections

In the current formulation, we have considered that Iyy � Ixx,
which inherently assumes that the lateral deformation in the beam
will be dominated by �y-y� direction displacements. If one wants
to explicitly include the deformations in the other principal direc-
tion �x-x� as well, it would result into two additional degrees-of-
freedom for 	 and �. For example, in addition to twist � and
extension 
 of the cross section, we will have to deal with �	y ,�x�
due to bending about the principal �x-x� direction and �	x ,�y� due
to bending about the principal �y-y� direction. The resulting equa-

tions for the Timoshenko beam formulation due to fully coupled
two-directional bending alone are too cumbersome to derive here
and are shown in the following for reference purposes as:

�a� Bending moment balance about local �x-x� axis

− EIxx��x,ss� − �AG�	y,s − �x� + ��EIyy����x� + ���AG	x

− ��EJ0�y,s − 
Ixx�
2�x + 
Ixx��x,tt� = Tc�s,t�

�A1�
�b� Shear force balance in the local �y-y� direction

− �AG�	y,ss − �x,s� + 2�AG��	x,s + ��2�AG	y

+ ���AG�y − Fcfcos �	y,ss + 
A	y,tt = Qn�s,t�
�A2�

�c� Bending moment balance about local �y-y� axis

− EIyy��y,ss� − �AG�	x,s + �y� + ��EIxx����y� + ���AG	y

+ ��EJ0�x,s − 
Iyy�
2�y + 
Iyy��y,tt� = Tn�s,t�

�A3�
�d� Shear force balance in the local �x-x� direction

− �AG�	x,ss + �y,s� − 2�AG��	y,s + ��2�AG	x

+ ���AG�x − Fcfcos �	x,ss + 
A	x,tt = Qc�s,t�
�A4�

The corresponding new geometric boundary conditions are as
follows:

�x�0,t� = 0, 	y�0,t� = 0, �y�0,t� = 0, 	x�0,t� = 0 �A5�
The additional four natural boundary conditions at the free end

of the cantilever beam for �s=L� are expressed in terms of the
contact-impact force vector F and moment vector M components
�see Eq. �3�� as

�Bending momentxx�at s=L = MC = EI�x,s�s=L = Fa��n + �csin���L��

�A6�

�Shear forceyy�at s=L = FN = − �AG�	y,s − �x�s=L = − �Facos �R

�A7�

�Bending momentyy�at s=L = MN = EI�y,s�s=L

= − Fa��c + �ncos���L�� �A8�

�Shear forcexx�at s=L = FC = − �AG�	x,s − �y�s=L = − �Fasin �R

�A9�
It should be noted that additional coupling terms will appear for

the partial differential equations governing the beam motion for
extension 
 and twist �. Using the above equations, the interested
researchers can easily expand Eqs. �21a�–�21d� to take into ac-
count of coupled bending effect about �y-y� axis.
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New First-Order Shear
Deformation Plate Theories
First-order shear deformation theories, one proposed by Reissner and another one by
Mindlin, are widely in use, even today, because of their simplicity. In this paper, two new
displacement based first-order shear deformation theories involving only two unknown
functions, as against three functions in case of Reissner’s and Mindlin’s theories, are
introduced. For static problems, governing equations of one of the proposed theories are
uncoupled. And for dynamic problems, governing equations of one of the theories are
only inertially coupled, whereas those of the other theory are only elastically coupled.
Both the theories are variationally consistent. The effectiveness of the theories is brought
out through illustrative examples. One of the theories has striking similarity with classi-
cal plate theory. �DOI: 10.1115/1.2423036�

1 Introduction
It is now well-known that in plate analysis, shear deformation

effects become important not only for thick plates but even for
thin plates vibrating at higher modes. As classical plate theory
�CPT� does not take into account shear effects, many theories got
evolved to address the deficiency.

First-order shear deformation theory �FSDT� proposed by Re-
issner and another one proposed by Mindlin are considered to be
pioneering theories which take into account shear effects.

Reissner �1,2�, used stress based approach to develop his
theory. Later, while at the same level of approximation, Mindlin
�3�, in 1951, employed displacement based approach. As per
Mindlin’s theory, transverse shear stresses turn out to be constant
through the thickness of the plate, but this violates the shear stress
free surface conditions. Mindlin’s theory satisfies constitutive re-
lations for transverse shear stresses and shear strains only in an
approximate manner by way of using shear correction factor. A
good discussion about theories of Reissner and Mindlin is avail-
able in a paper by Wang et al. �4�.

After FSDTs of Reissner and Mindlin, a class of theories, gen-
erally known as “higher order theories,” was developed by various
researchers.

Some important higher order theories are available in the litera-
ture. These include theories by various researchers: Murty �5�
with 5, 7, 9, … unknowns; Lo, Christensen and Wu �6� with
eleven unknowns; Kant �7� with six unknowns; Bhimaraddi and
Stevens �8� with five unknowns; Reddy �9� with five unknowns;
Soldatos �10� with three unknowns; Reddy �11� with eight un-
knowns; and Hanna and Leissa �12� with four unknowns.

It is important to note that Srinivas et al. �13� have carried out
a three-dimensional, linear, small deformation theory of elasticity
solution for thick plates.

A critical review of plate theories is given by Vasil’ev �14�.
Whereas Liew et al. �15� surveyed plate theories particularly ap-
plied to thick plate vibration problems. A recent review paper is
by Ghugal and Shimpi �16�.

Even though more accurate higher order theories are available,
half a century old FSDTs of Reissner and Mindlin are still in
vogue, �e.g, Refs. �17–22�� because of their inherent simplicity. It
needs to be noted that finite elements based on FSDT are prone to
shear locking phenomenon.

The present paper proposes two new displacement based first-

order shear deformation plate theories involving only two un-
known functions. FSDTs of Reissner and of Mindlin involve use
of three unknown functions.

It is to be noted that recently, a refined plate theory �RPT� was
proposed �23� for shear-deformable isotropic plates. The theory,
using only two unknown functions, gives rise to two governing
equations, which are uncoupled for static problems.

Taking a cue from the just mentioned Ref. �23�, two new dis-
placement based FSDTs are proposed here. These two new FSDTs
have distinct advantages over Reissner’s and Mindlin’s theories.
Illustrative examples are given so as to demonstrate the efficacies
of the theories.

2 Plate Under Consideration
The following is assumed about the plate under consideration

• The plate is of uniform thickness “h.”
• The plate is of orthotropic material.
• Midsurface of the undeformed plate is taken as a reference

plane.
The right handed Cartesian coordinate system o-x-y-z

would be utilized throughout the paper.
The origin “o” of the coordinate system can be selected at

a convenient location in this plane. Also the x-axis and
y-axis are parallel to principal material axis.

The xy-plane is assumed to coincide with midsurface of
the undeformed plate.

• The midsurface of the plate is an area R�x ,y� enclosed by a
boundary curve ��x ,y�, as shown in Fig. 1.

• The plate is subjected to a lateral load of q�x ,y , t� acting
along the z-direction.

• Local directions n, s, and z� at a typical point on an edge are
as shown. Where “n” is normal and “s” is tangent to a
boundary at the point. nx and ny are the direction cosines of
direction n with respect to the x-axis and y-axis, respec-
tively. Direction z� is parallel to the z-axis of coordinate
system.

The plate is made of orthotropic material. The notation used
here for describing the material properties is the same as the one
used by Reddy �9� as well as by Jones �24�.

The orthotropic plate has following material properties: E1, E2
are elastic moduli, G12, G23, G31 are shear moduli, and �12, �21
are Poisson’s ratios �Here, in the notation, subscripts 1, 2, 3 per-
tain to x ,y ,z directions of Cartesian coordinate system, respec-
tively�.

In the case of isotropic plate, the material properties reduce to
E1=E2=E, G12=G23=G31=G, �12=�21=�.
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3 Assumptions of New First-Order Shear Deformation
Theories

Assumptions of the proposed new FSDTs are of the same genre
as those of Mindlin’s theory and are as follows.

1. Displacements involved are small in comparison with the
plate thickness and, therefore, strains involved are infinitesimal.

Comment on the assumption: As a result of this assumption, the
direct strains �x, �y, �z, and shear strains �xy, �yz, �zx can be
expressed in terms of displacements u along the x-direction, v
along the y-direction, and w along the z-direction as follows:

�x =
�u

�x
; �y =

�v
�y

; �z =
�w

�z

�xy =
�v
�x

+
�u

�y
; �yz =

�w

�y
+

�v
�z

; �zx =
�u

�z
+

�w

�x
�1�

2. Transverse normal stress �z is negligible in comparison with
inplane normal stresses �x and �y.

Comment on the assumption: As a result of this assumption, the
direct stresses �x, �y and shear stresses �xy, �yz, �zx can be related
to linear strains �x, �y and shear strains �xy, �yz, �zx by constitutive
relations as follows:

�
�x

�y

�xy

�yz

�zx

� = �
Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q44 0

0 0 0 0 Q55

��
�x

�y

�xy

�yz

�zx

� �2�

where Q11, Q12, Q22, Q44, Q55, Q66 are expressed in terms of
properties of the orthotropic material as follows:

Q11 =
E1

1 − �12�21
; Q12 =

�12E2

1 − �12�21
=

�21E1

1 − �12�21

Q22 =
E2

1 − �12�21

Q44 = G23; Q55 = G31; Q66 = G12 �3�
3. A line, which is normal to the midsurface of plate before

deformation, remains straight �i.e., may or may not be normal to
the midsurface of the plate� after deformation.

Comment on the assumption: Transverse strains �zx and �yz are
constant through the thickness, and, by implication, transverse
stresses �zx and �yz will also be constant through the thickness.

This contradicts the well known fact that the transverse shear
stresses vary more or less parabolically through the plate thick-
ness; and therefore correction becomes necessary, one can write
the constitutive relationship �2� in modified form as follows:

�
�x

�y

�xy

�yz

�zx

� = �
Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q66 0 0

0 0 0 kQ44 0

0 0 0 0 kQ55

��
�x

�y

�xy

�yz

�zx

� �4�

where k is a shear correction factor which is analogous to shear
correction factor proposed by Mindlin �3�.

As the constitutive relationship is modified as shown in Eq. �4�,
unlike FSDT proposed by Mindlin �3�, moments Mx, My, Mxy and
shear forces Qx, Qy can now be defined as follows:

�
Mx

My

Mxy

Qx

Qy

� =	
z=−h/2

z=h/2 �
�xz

�yz

�xyz

�zx

�yz

�dz �5�

Based on the assumptions, two new displacement based theo-
ries, namely “new first-order shear deformation plate theory—I”
and “new first-order shear deformation plate theory—II” would
now be presented.

4 New First-Order Shear Deformation Plate
Theory—I

4.1 Expressions for Displacements, Moments, Shear
Forces in the New First-Order Shear Deformation Plate
Theory—I. Based on the assumptions made earlier in Sec. 3 and
going by the previous experience �Ref. �23��, it is possible to write
the displacements as follows:

u = − z
�wb

�x
�6�

v = − z
�wb

�y
�7�

w = wb�x,y,t� + ws�x,y,t� �8�
Using expressions for displacements �6�–�8� in strain-

displacement relations �1�, the expressions for strains can be ob-
tained as follows.:

�x = − z
�2wb

�x2 �9�

�y = − z
�2wb

�y2 �10�

�z = 0 �11�

�xy = − 2z
�2wb

�x�y
�12�

�yz =
�ws

�y
�13�

�zx =
�ws

�x
�14�

Using strain expressions �9�–�14� in constitutive relations �4�,
stresses �x, �y, �xy, �yz, and �zx can be obtained. Using these
stresses in definition �5� for moments and shear forces, expres-
sions for moments Mx, My, Mxy and shear forces Qx, Qy can be
obtained.

These expressions are

Fig. 1 Geometry of a plate
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Mx = − 
D11
�2wb

�x2 + D12
�2wb

�y2 � �15�

My = − 
D22
�2wb

�y2 + D12
�2wb

�x2 � �16�

Mxy = − 2
D66
�2wb

�x�y
� �17�

Qx = A55
 �ws

�x
� �18�

Qy = A44
 �ws

�y
� �19�

where

D11 =
Q11h

3

12
; D22 =

Q22h
3

12
; D12 =

Q12h
3

12
; D66 =

Q66h
3

12

A44 = kQ44h; A55 = kQ55h �20�

It may be noted that expressions for moments Mx, My and Mxy
contain only wb as an unknown function. Also, The expressions
for shear forces Qx and Qy contain only ws as an unknown func-
tion.

4.2 Expressions for Kinetic and Total Potential Energies in
Respect of the New First-Order Shear Deformation Plate
Theory—I. It should be noted that displacement w, given by Eq.
�8�, is not a function of z. As a result of this, normal strain �z
comes out to be zero. Therefore, the expressions for kinetic energy
T and total potential energy � for the plate can be written as

T =	 	
R
	

z=−h/2

z=h/2
1

2
�
� �u

�t

2

+ � �v
�t

2

+ � �w

�t

2�dzdxdy

�21�

� =	 	
R
	

z=−h/2

z=h/2
1

2
��x�x + �y�y + �xy�xy + �yz�yz + �zx�zx�dzdxdy

−	 	
R

qwdxdy �22�

Using expressions �6�–�14� and �4� in Eqs. �21� and �22�, ex-
pressions for kinetic energy T and total potential energy � can be
written as

T =
�h3

24 	 	R
�
 �

�t
� �wb

�x

�2

+ 
 �

�t
� �wb

�y

�2�dxdy

+
�h

2 	 	R
� �wb

�t
+

�ws

�t
�2

dxdy �23�

� =
1

2 	 	R

D11� �2wb

�x2 
2

+ D22� �2wb

�y2 
2

+ 2D12
�2wb

�x2

�2wb

�y2

+ 4D66� �2wb

�x�y

2

+ A44� �ws

�y

2

+ A55� �ws

�x

2�dxdy

−	 	
R

q�wb + ws�dxdy �24�

4.3 Obtaining Governing Equations and Boundary Condi-
tions of the New First-Order Shear Deformation Plate
Theory—I Using Hamilton’s Principle. Governing differential
equations and boundary conditions can be obtained using well
known Hamilton’s principle

	
t=t1

t=t2

	�T − ��dt = 0 �25�

where 	 indicates a variation with respect to x and y only; t1, t2 are
values of time variable t at the start and at the end of time interval
�in the context of Hamilton’s Principle�, respectively.

Using expressions �23� and �24� in the preceding Eq. �25� and
integrating the equation by parts, taking into account the indepen-
dent variations of wb and ws, yields the governing differential
equations and boundary conditions in respect of the new first-
order shear deformation theory-I �NFSDT-I�, which are as
follows.

4.3.1 Governing Equations of NFSDT-I.

D11
�4wb

�x4 + 2�D12 + 2D66�
�4wb

�x2�y2 + D22
�4wb

�y4 −
�h3

12

�2

�t2 ��2wb�

+ �h� �2wb

�t2 +
�2ws

�t2 
 = q �26�

− �A55
�2ws

�x2 + A44
�2ws

�y2 
 + �h� �2wb

�t2 +
�2ws

�t2 
 = q �27�

Alternate form Governing equations can be written in alternate
form as follows:

− � �2Mx

�x2 + 2
�2Mxy

�x�y
+

�2My

�y2 
 −
�h3

12

�2

�t2��2wb� + �h� �2wb

�t2 +
�2ws

�t2 

= q �28�

− � �Qx

�x
+

�Qy

�y

 + �h� �2wb

�t2 +
�2ws

�t2 
 = q �29�

where

�2 =
�2

�x2 +
�2

�y2 �30�

4.3.2 Boundary Conditions of NFSDT-I.

1. The conditions involving wb �i.e., bending component of lat-
eral displacement�

Vn +
�h3

12

 �2

�t2� �wb

�n

� = 0 or wb is specified �31�

Mn = 0 or
�wb

�n
is specified �32�

where

Mn =	
−h/2

h/2

�nzdz = nx
2Mx + 2nxnyMxy + ny

2My

Mns =	
−h/2

h/2

�nszdz = nxny�My − Mx� + �nx
2 − ny

2�Mxy

Vn =
�Mn

�n
+ 2

�Mns

�s

�wb

�n
=

�wb

�x
nx +

�wb

�y
ny
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2. The condition involving ws �i.e., shear component of lateral
displacement�

Qn = 0 or ws is specified �33�
where

Qn =	
−h/2

h/2

�z�ndz = Qxnx + Qyny

�It is to be noted that normal stress �n and shear stresses �ns, �z�n
are with respect to n, s, z� coordinate system.�

If the integral is evaluated for a part of the curve ��x ,y� say
between point 1 and point 2, one gets the term �Mns	wb�1

2 �where
1 is a starting point and 2 is a end point of smooth curve�, which
is zero for a closed smooth curve, as the starting point 1 and end
point 2 of the curve coincides.

However, in case of polygonal plates, the term indicates con-
centrated forces at corners. If a particular case of rectangular plate
is considered, the magnitude of corner force will be “2Mns.”

This reasoning is exactly on the same lines as given in Ref.
�25�, in the context of classical plate theory.

For illustration, commonly occurring boundary conditions are
stated below.

4.3.3 Commonly Occurring Boundary Conditions using
NFSDT-I.

Simply-supported plate

wb = 0

Mn = 0

ws = 0

Clamped plate

wb = 0

�wb

�n
= 0

ws = 0

Free plate

Vn +
�h3

12

 �2

�t2� �wb

�n

� = 0

Mn = 0

Qn = 0

Comments on governing equations and boundary conditions of
the new first-order shear deformation plate theory—I are given
later.

5 New First-Order Shear Deformation Plate
Theory—II

5.1 Expressions for Displacements, Moments, Shear
Forces in the New First-Order Shear Deformation Plate
Theory—II. Based on the assumptions made earlier in the Sec. 3,
it is possible to write the displacements, which are different from
those given by expressions �6�–�8�, as follows:

u = − z
�


�x
�34�

v = − z
�


�y
�35�

w = w�x,y,t� �36�

where 
 is function of coordinates x ,y and time t.
Using expressions for displacements �34�–�36� in strain-

displacement relations �1�, the expressions for strains can be ob-
tained, further using constitutive relations �4�, stresses �x, �y, �xy,
�yz, and �zx can be obtained.

Using these stresses in definition �5� for moments and shear
forces, expressions for moments Mx, My, Mxy and shear forces Qx,
Qy can be obtained. These expressions are

Mx = − 
D11
�2


�x2 + D12
�2


�y2 � �37�

My = − 
D22
�2


�y2 + D12
�2


�x2 � �38�

Mxy = − 2
D66
�2


�x�y
� �39�

Qx = A55
 �w

�x
−

�


�x
� �40�

Qy = A44
 �w

�y
−

�


�y
� �41�

It may be noted that expressions for moments Mx, My, and Mxy
contain only 
 as an unknown function. Terms D11, D22, D66, A44,
and A55 are given in Eq. �20�.

5.2 Expressions for Kinetic and Total Potential Energies in
Respect of the New First-Order Shear Deformation Plate
Theory—II. Using expressions �34�–�36�, �1�, and �4� in Eqs.
�21� and �22�, expressions for kinetic energy and strain energy can
be written as

T =
�h3

24 	 	R
�
 �

�t
� �


�x

�2

+ 
 �

�t
� �


�y

�2�dxdy

+
�h

2 	 	R
� �w

�t
�2

dxdy �42�

� =
1

2 	 	R

D11� �2


�x2 
2

+ D22� �2


�y2 
2

+ 2D12
�2


�x2

�2


�y2

+ 4D66� �2


�x�y

2�dxdy +

1

2 	 	R

A44� �w

�y
−

�


�y

2

+ A55� �w

�x
−

�


�x

2�dxdy −	 	

R
qwdxdy �43�

5.3 Obtaining Governing Equations and Boundary Condi-
tions of the New First-Order Shear Deformation Plate
Theory—II Using Hamilton’s Principle. Applying the Hamil-
ton’s principle as stated in Eq. �25�, and using expressions for
kinetic energy T and total potential energy � �i.e., expressions
�42� and �43��, the governing differential equations and boundary
conditions in respect of the new first-order shear deformation
plate theory—II �NFSDT-II� can be obtained for the plate, which
are as follows.

5.3.1 Governing Equations of NFSDT-II.

D11
�4


�x4 + 2�D12 + 2D66�
�4


�x2�y2 + D22
�4


�y4 − �A55
�2


�x2 + A44
�2


�y2 

−

�h3

12

�2

�t2 ��2
� + �A55
�2w

�x2 + A44
�2w

�y2 
 = 0 �44�
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− �A55
�2w

�x2 + A44
�2w

�y2 
 + �h� �2w

�t2 
 + �A55
�2


�x2 + A44
�2


�y2 
 = q

�45�
Alternate form Governing equations can be written in alternate

form as follows

− � �2Mx

�x2 + 2
�2Mxy

�x�y
+

�2My

�y2 
 + � �Qx

�x
+

�Qy

�y

 −

�h3

12

�2

�t2 ��2
� = 0

�46�

− � �Qx

�x
+

�Qy

�y

 + �h� �2w

�t2 
 = q �47�

5.3.2 Boundary Conditions of NFSDT-II.

Vn + Qn +
�h3

12

 �2

�t2� �


�n

� = 0 or 
 is specified �48�

Mn = 0 or
�


�n
is specified �49�

Qn = 0 or w is specified �50�

where

Mn =	
−h/2

h/2

�nzdz = nx
2Mx + 2nxnyMxy + ny

2My

Mns =	
−h/2

h/2

�nszdz = nxny�My − Mx� + �nx
2 − ny

2�Mxy

Vn =
�Mn

�n
+ 2

�Mns

�s

�


�n
=

�


�x
nx +

�


�y
ny

Qn =	
−h/2

h/2

�z�ndz = Qxnx + Qyny

�It is to be noted that normal stress �n and shear stresses �ns, �z�n
are with respect to n, s, z� co-ordinate system.� While deriving the
boundary conditions, logic similar to that adopted for NFSDT-I
was used in case of NFSDT-II also. Hence, for a rectangular plate
there would be corner reactions of magnitude “2Mns”. For illus-
tration, commonly occurring boundary conditions are stated be-
low.

5.3.3 Commonly Occurring Boundary Conditions using
NFSDT-II.

Simply-supported plate


 = 0

Mn = 0

w = 0

Clampled plate


 = 0

�


�n
= 0

w = 0

Free plate

Vn + Qn +
�h3

12

 �2

�t2� �


�n

� = 0

Mn = 0

Qn = 0

Comments on governing equations and boundary conditions of
NFSDT-I and NFSDT-II are given below.

6 Comments on NFSDT-I and NFSDT-II

1. With respect to governing equations, the following is to be
noted:

�a� In each theory, one governing equation is a fourth order
one and the second is a second order one.

�b� The governing equations of both theories, involve only
two unknown functions �wb, ws in the case of NFSDT-I
and w, 
 in the case of NFSDT-II�. Even first-order
shear deformation theories of Reissner �2� and Mindlin
�3�, which are considered to be simple ones, involve
three unknown functions.

�c� �i� In the case of a static problem, the governing
equations are uncoupled in NFSDT-I.

�ii� In the case of a dynamic problem,

A. governing equations of NFSDT-I, are only in-
ertially coupled, and there is no elastic cou-
pling at all, whereas

B. governing equations of NFSDT-II, are only
elastically coupled, and there is no inertial
coupling at all.

2. �a� With respect to boundary conditions for NFSDT-I, the
following is to be noted:

There are three conditions along the boundary ��x ,y�.
Out of these, two conditions �Eqs. �31� and �32�� are
stated in terms of wb and its derivatives only.
The remaining one condition �Eq. �33�� is stated in
terms of ws and its derivative only.

�b� With respect to boundary conditions for NFSDT-II,
the following is to be noted:

There are three conditions along the boundary ��x ,y� �i.e.,
Eqs. �48�–�50��, which are stated in terms of 
 and w and
its derivative only.

3. Some entities of NFSDT-I and NFSDT-II have strong simi-
larity with those of CPT:

�a� The following entities of NFSDT-I and NFSDT-II are
identical, save for the appearance of wb or 
 instead
of w, to the corresponding entities of the CPT:

�i� Expressions for inplane strains �x, �y, �xy, stresses
�x, �y, �xy and expressions for moments Mx, My,
Mxy

�ii� Conditions on boundary curve ��x ,y� involving
wb for NFSDT-I �i.e., conditions �31� and �32��.

�iii� Conditions on boundary curve ��x ,y� involving

 for NFSDT-II �i.e., conditions �49��.

�The bending component wb of lateral displacement
figures in the just mentioned equations of NFSDT-I,
and similarly 
 figures in the just mentioned equa-
tions of NFSDT-II, whereas lateral displacement w
figures in the corresponding equations of the CPT.�

�b� The governing Eq. �26�, of NFSDT-I is very similar
to the governing equation of CPT. �If in Eq. �26� the
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term �2ws /�t2 is ignored, and if wb is replaced by w,
then the resulting equation is identical to the govern-
ing equation of CPT.�

4. CPT comes out as a special case of NFSDT-I whereas
NFSDT-I comes out as a special case of RPT �see Ref. �23��
as the governing equations and boundary conditions of
NFSDT-I are identical to those of RPT-Variant I of Ref. �23�.

5. �a� It should be noted that, the common feature with re-
fined plate theory �23� and present NFSDT-I and
NFSDT-II theories is that, they have same number of
variables. However, the theories presented are quiet
different right from the assumption stage. RPT is
higher order plate theory, gives cubic shear stress dis-
tribution, whereas NFSDT-I and NFSDT-II are first-
order shear deformation theories.

�b� The assumptions of proposed displacement theories
are on the same lines as those of FSDT of Mindlin, so
it will also require shear correction factor which is
taken as 5/6. There is good discussion on shear cor-
rection factor in Mindlin’s paper �3�. It is to be noted
that the same number appears in Reissner �1� as well
as RPT-Variant I �See Ref. �23�� theories.

6. Finite element based on FSDT of Mindlin is prone to shear
locking for thin plates. Literature shows, even today, quiet a
lot efforts put in by researchers �e.g, Ref. �26–30�� on shear
locking free finite elements.

Whereas in the case of present theories, inspection of the
governing equations �Eqs. �26� and �27� for NFSDT-I and
Eqs. �44� and �45� for NFSDT-II� reveals that, finite ele-
ments based on these theories would require C0 continuity
for shear component ws of displacement, whereas C1 conti-
nuity would require for bending component wb of displace-
ment, therefore, shear locking will not occur.

Simultaneous use of C0 and C1 continuity requirements was
also utilized by Reddy �31�. Use of only two variables, in
proposed theories, also especially only inertially decoupled
governing equations in the case of NFSDT-I, will make
these finite elements really interesting to study.

7. If NFSDT-I is applied to laminated plate, it will give rise to
elastically decoupled equations, which is not possible by any
other known theory.

Now, well known examples, available in the literature
�9,13,22,23,32� would be taken up to demonstrate the effective-
ness of presented theories.

7 Illustrative Examples for Static Analysis of a Simply
Supported Rectangular Plate Carrying Lateral Load

Consider a rectangular plate �of length a, width b, and thickness
h� of orthotropic material. The plate occupies �in o-x-y-z right-
handed Cartesian coordinate system� a region

0 � x � a; 0 � y � b; − h/2 � z � h/2 �51�
The plate has simply supported boundary conditions at all four

edges x=0, x=a, y=0 and y=b. The plate is loaded on surface
z=−h /2, by a lateral load q�x ,y� acting in the z-direction.

Two specific cases of loading q�x ,y� would be considered. In
one case, the loading would be a uniformly distributed load; and,
in the second case, the loading would be a sinusoidal loading.

7.1 Application of NFSDT-I (Static Analysis)

7.1.1 Governing Equations for Illustrative Examples (Static
Analysis). The governing equations for static analysis of plate can
be obtained from Eqs. �26� and �27� by setting the kinetic energy
terms to zero, as follows:

D11
�4wb

�x4 + 2�D12 + 2D66�
�4wb

�x2�y2 + D22
�4wb

�y4 = q�x,y� �52�

− 
A55
�2ws

�x2 + A44
�2ws

�y2 � = q�x,y� �53�

7.1.2 Boundary Conditions for Illustrative Examples (Static
Analysis). The boundary conditions of the plate are given as fol-
lows:

1. At corners �x=0,y=0�, �x=0,y=b�, �x=a ,y=0�, and �x
=a ,y=b� the following condition holds:

wb = 0 �54�
2. On edges x=0 and x=a, the following conditions hold:

wb = 0 �55�

− 
D11
�2wb

�x2 + D12
�2wb

�y2 � = 0 �56�

ws = 0 �57�
3. On edges y=0 and y=b, the following conditions hold:

wb = 0 �58�

− 
D22
�2wb

�y2 + D12
�2wb

�x2 � = 0 �59�

ws = 0 �60�

7.1.3 Solution of Illustrative Examples (Static Analysis). Lat-
eral load applied on the plate, in general, can be represented using
a double Fourier series as follows:

q�x,y� = �
m=1,2,3,. . .

�

�
n=1,2,3,. . .

�

qmn sin�m
x

a

sin�n
y

b

 �61�

where qmn are Fourier constants, which depend on loading.
The following displacement functions wb and ws satisfy the

boundary conditions �54�–�60�

wb = �
m=1,2,3,. . .

�

�
n=1,2,3,. . .

�

Wbmn
sin�m
x

a

sin�n
y

b

 �62�

ws = �
m=1,2,3,. . .

�

�
n=1,2,3,. . .

�

Wsmn
sin�m
x

a

sin�n
y

b

 �63�

where Wbmn
, Wsmn

are constant coefficients associated with wb and
ws, respectively.

Using expressions �62�, �63�, and �61� in the governing Eqs.
�52� and �53�, one obtains two completely uncoupled equations
which can be written in matrix form, as follows:


K11mn
0

0 K22mn

��Wbmn

Wsmn

� = �qmn

qmn
� �64�

where

K11mn
= D11�m


a

4

+ 2�D12 + 2D66��m


a

2�n


b

2

+ D22�n


b

4
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K22mn
= A55�m


a

2

+ A44�n


b

2

It can be seen from Eq. �64� that Wbmn
=qmn /K11mn

and Wsmn
=qmn /K22mn

. Using this information in Eqs. �62� and �63� one gets
displacements as

wb = �
m=1,2,3,. . .

�

�
n=1,2,3,. . .

�
qmn

K11mn

sin�m
x

a

sin�n
y

b

 �65�

ws = �
m=1,2,3,. . .

�

�
n=1,2,3,. . .

�
qmn

K22mn

sin�m
x

a

sin�n
y

b

 �66�

Here it is observed from the Eq. �64� that bending and shearing
components are uncoupled.

• Sinusoidal Lateral Load
For a sinusoidal load q0 sin�m
x /a�sin�n
y /b�, the Fou-

rier constants qmn are given by

qmn = q0 for m = 1 and n = 1

=0 for m � 1 and n � 1 �67�
Results for plate with sinusoidal loading are tabulated in
Table 1.

• Uniformly Distributed Lateral Load

For a uniformly distributed load q0, the Fourier constants qmn
are given by

qmn =
16q0


2mn
for m = 1,3,5,… . , and n = 1,3,5,…

=0 for m = 2,4,6,… . , and n = 2,4,6,… �68�
Results for plate with uniformly distributed load are tabulated

in Tables 2 and 3.
Results in terms of nondimensionalized deflections ŵ, w̃, w̄ and

stresses �̄x, �̄y, �̄zx are tabulated in Tables 1–3.
Definitions used for nondimensionalized deflections and

stresses are as follows:

ŵ = wE / �hq0� for isotropic plate with sinusoidal loading;
w̃ = wG / �hq0� for isotropic plate with uniformly distributed

loading;
w̄ = wQ11/ �hq0� for orthotropic plate with uniformly

distributed loading;
�̄x = �x /q0 for isotropic and orthotropic plate;
�̄y = �y /q0 for isotropic and orthotropic plate;
�̄zx = �zx /q0 for orthotropic plate with uniformly

distributed loading.

Now, NFSDT-II will be applied to the just discussed static
problem.

7.2 Application of NFSDT-II (Static Analysis)

7.2.1 Governing Equations for Illustrative Examples (Static
Analysis). The governing equations for static analysis of plate can
be obtained from Eqs. �44� and �45� by setting the kinetic energy
terms to zero, and these equations are as follows:

D11
�4


�x4 + 2�D12 + 2D66�
�4


�x2�y2 + D22
�4


�y4 − �A55
�2


�x2 + A44
�2


�y2 

+ �A55

�2w

�x2 + A44
�2w

�y2 
 = 0 �69�

− 
A55
�2w

�x2 + A44
�2w

�y2 � + 
A55
�2


�x2 + A44
�2


�y2 � = q�x,y� �70�

Table 1 Comparison of various nondimensional parameters of simply supported isotropic
square plate „b /a=1.0,h /a=0.1… under sinusoidal transverse load: ŵ=wE /hq0, �̄x=�x /q0, �̄zx
=�zx /q0, „E2=E1=E ,G12=G13=G23=G= †E /2„1+�…‡ ,�12=�21=�=0.3…

Parameter EXACTa RPTa CPTa Presentb

Nondimensional displacement ŵ
at x=a /2, y=b /2

294.2375 296.0568 280.2613 296.0674

Nondimensional stress �̄x

at x=a /2, y=b /2, z=h /2

20.04426 19.94322 19.75763 19.75763

Nondimensional stress �̄zx

at x=0, y=b /2, z=0

Not quoted 2.385722 2.387324 2.387324

aTaken from Ref. �23�.
bResults using NFSDT-I and NFSDT-II.

Table 2 Comparison of various nondimensional parameters of
simply supported isotropic square plate „b /a=1… under uni-
formly distributed transverse load: w̃=wG /hq0, �̄x=�x /q0, �̄y
=�y /q0, �̄zx=�zx /q0, „E2=E1=E ,G12=G13=G23=G= †E /2„1
+�…‡ ,�12=�21=�=0.3…

h /a Results by various theories

Nondimensional displacement w̃ at x=a /2, y=b /2

EXACTa Reissnera CPTa Presentb

0.05 2761.3 2760.00 2729.9 2765.27
0.1 178.45 178.13 170.62 179.46
0.14 48.40 48.247 44.414 48.92

Nondimensional stress �̄x at x=a /2, y=b /2, z=h /2

EXACTa Reissnera CPTa Presentb

0.05 115.21 115.02 114.93 114.93
0.1 29.012 28.821 28.733 28.733
0.14 14.939 14.749 14.660 14.660

Nondimensional stress �̄y at x=a /2, y=b /2, z=h /2

EXACTa Reissnera CPTa Presentb

0.05 115.21 115.02 114.93 114.93
0.1 29.012 28.821 28.733 28.733
0.14 14.939 14.749 14.660 14.660

Nondimensional stress �̄zx at x=0, y=b /2, z=0

EXACTa Reissnera CPTa Presentb

0.05 9.8339 9.8656 9.8656 9.8656
0.1 4.8816 5.0232 5.0232 5.0232
0.14 3.4345 3.6021 3.6021 3.6021

aTaken from Ref. �33�.
bResults using NFSDT-I and NFSDT-II.
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7.2.2 Boundary Conditions for Illustrative Examples (Static
Analysis). The boundary conditions of the plate are given as fol-
lows:

1. At corners �x=0,y=0�, �x=0,y=b�, �x=a ,y=0�, and �x
=a ,y=b� the following condition holds:


 = 0 �71�
2. On edges x=0 and x=a, the following conditions hold:


 = 0 �72�

− 
D11
�2


�x2 + D12
�2


�y2 � = 0 �73�

w = 0 �74�
3. On edges y=0 and y=b, the following conditions hold:


 = 0 �75�

− 
D22
�2


�y2 + D12
�2


�x2 � = 0 �76�

w = 0 �77�

7.2.3 Solution of the Illustrative Examples (Static Analysis).
Lateral load applied on the plate, in general, can be represented by
Eq. �61�.

The following displacement functions 
 and w satisfy the
boundary conditions �71�–�77�


 = �
m=1,2,. . .

�

�
n=1,2,. . .

�

�mn sin�m
x

a

sin�n
y

b

 �78�

w = �
m=1,2,. . .

�

�
m=1,2,. . .

�

Wmn sin�m
x

a

sin�n
y

b

 �79�

where �mn, Wmn are constant coefficients associated with 
 and
w, respectively.

Using expressions �78�, �79�, and �61� in the governing Eqs.
�69� and �70�, one obtains two equations which can be written in
matrix form, as follows:


k11mn
k12mn

k12mn
k22mn

���mn

Wmn
� = � 0

qmn
� �80�

where

k11mn
= D11�m


a

4

+ 2�D12 + 2D66��m


a

2�n


b

2

+ D22�n


b

4

+ A55�m


a

2

+ A44�n


b

2

k12mn
= − 
A55�m


a

2

+ A44�n


b

2�

k22mn
= A55�m


a

2

+ A44�n


b

2

It can be seen from Eq. �80� that �mn=−qmnk12/ �k11k22−k12
2 �

and Wmn=qmnk11/ �k11k22−k12
2 �. Using this information in Eqs.

�78� and �79� one gets displacements as:


 = �
m=1,2,3,. . .

�

�
n=1,2,3,. . .

�
− qmnk12

�k11k22 − k12
2 �

sin�m
x

a

sin�n
y

b



�81�

w = �
m=1,2,3,. . .

�

�
n=1,2,3,. . .

�
qmnk11

�k11k22 − k12
2 �

sin�m
x

a

sin�n
y

b



�82�
Here it is observed from the Eq. �80� that 
 and w components

are coupled unlike the case of NFSDT-I solution.

• Sinusoidal Lateral Load
For a sinusoidal load q0 sin�m
x /a�sin�n
y /b�, the Fou-

rier constants qmn are given by Eq. �67�.
Results for plate with sinusoidal loading are tabulated in

Table 1.
• Uniformly Distributed Lateral Load

For a uniformly distributed load q0, the Fourier constants qmn
are given by Eq. �68�.

Results for plate with uniformly distributed load are tabulated
in Tables 2 and 3.

Results in terms of nondimensionalized deflections ŵ, w̃, w̄ and
stresses �̄x, �̄y, �̄zx are tabulated in Tables 1–3.

Definitions used for nondimensionalized deflections and
stresses are same as defined previously in Sec. 7.1.3.

8 Illustrative Examples for Free Vibration Analysis of
a Simply Supported Rectangular Plate

An illustrative example would be taken up to demonstrate the
effectiveness of present theories for vibration analysis.

Consider a plate �of length a, width b, and thickness h� of
orthotropic material. The plate occupies �in o-x-y-z right-handed
Cartesian coordinate system� a region defined by Eq. �51�. The
plate has simply supported boundary conditions at all four edges
x=0, x=a, y=0, and y=b. The plate is in a state of free vibrations.

Table 3 Comparison of various nondimensional parameters of
simply supported orthotropic square plate „b /a=1… under uni-
formly distributed transverse load: w̄=wQ11/hq0, �̄x=�x /q0,
�̄y=�y /q0, �̄zx=�zx /q0, „E2 /E1=0.52500,G12/E1=0.29281,G13/E1
=0.17809,G23/E1=0.29713,�12=0.44046,�21=0.23124…

h /a Results by various theories

Nondimensional displacement w̄ at x=a /2, y=b /2

EXACTa Reissnera CPTa Presentb

0.05 10443 10442 10246 10413.4
0.1 688.57 688.37 640.39 681.75
0.14 191.07 191.02 166.7 187.77

Nondimensional stress �̄x at x=a /2, y=b /2, z=h /2

EXACTa Reissnera CPTa Presentb

0.05 144.31 143.87 144.39 144.39
0.1 36.021 35.578 36.098 36.098
0.14 18.346 17.906 18.417 18.417

Nondimensional stress �̄y at x=a /2, y=b /2, z=h /2

EXACTa Reissnera CPTa Presentb

0.05 87.08 86.921 86.487 86.487
0.1 22.21 22.048 21.622 21.622
0.14 11.615 11.453 11.031 11.031

Nondimensional stress �̄zx at x=0, y=b /2, z=0

EXACTa Reissnera CPTa Presentb

0.05 10.873 10.864 10.972 10.972
0.1 5.3411 5.4267 5.5642 5.5642
0.14 3.7313 3.8741 3.986 3.986

aTaken from Ref. �32�.
bResults using NFSDT-I and NFSDT-II.
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8.1 Application of NSFDT-I (Free Vibration Analysis)

8.1.1 Governing Equations for Illustrative Examples (Free Vi-
bration Analysis). The governing equations for free vibration of
plate can be obtained from Eqs. �26� and �27� by setting the ex-
ternal load �here, lateral load q� to zero

D11
�4wb

�x4 + 2�D12 + 2D66�
�4wb

�x2�y2 + D22
�4wb

�y4 −
�h3

12

�2

�t2 ��2wb�

+ �h� �2wb

�t2 +
�2ws

�t2 
 = 0 �83�

− 
A55
�2ws

�x2 + A44
�2ws

�y2 � + �h� �2wb

�t2 +
�2ws

�t2 
 = 0 �84�

8.1.2 Boundary Conditions for Illustrative Examples (Free Vi-
bration Analysis). The boundary conditions are same as those
given by conditions �54�–�60�.

8.1.3 Solution of the Illustrative Examples (Free Vibration
Analysis). The following displacement functions 
 and w satisfy
the boundary conditions �54�–�60�.

wb = �
m=1,2. . .

�

�
n=1,2. . .

�

Wbmn
sin�m
x

a

sin�n
y

b

sin��mnt� �85�

ws = �
m=1,2. . .

�

�
n=1,2. . .

�

Wsmn
sin�m
x

a

sin�n
y

b

sin��mnt� �86�

where Wbmn
, Wsmn

are constants and �mn is the circular frequency
of vibration associated with mth mode in the x-direction and nth
mode in the y-direction.

Using expressions �85� and �86� in the governing Eqs. �83� and
�84�, one obtains two equations which are written in matrix form
as follows:


K11mn
0

0 K22mn

��Wbmn

Wsmn

� − �mn
2 
M11mn

M12mn

M12mn
M22mn

��Wbmn

Wsmn

� = 
0

0
�

�87�

where

M11mn
= ��h3

12

�m


a

2

+ �n


b

2� + �h�

M12mn
= ��h�

M22mn
= ��h�

Equation �87� is of a standard eigenvalue form, and solving it
one gets free vibration frequencies.

Here, it is observed from the Eq. �87� that bending and shearing
components are elastically uncoupled, but are inertially coupled.

Results are tabulated in Tables 4 and 5 and discussed later.
Now, NSFDT-II will be applied to the just discussed vibration

problem.

8.2 Application of NSFDT-II (Free Vibration Analysis)

8.2.1 Governing Equations for Illustrative Examples (Free Vi-
bration Analysis). The governing equations for free vibration of
plate can be obtained from Eqs. �44� and �45� by setting the ex-
ternal load �here, lateral load q0� to zero

D11
�4


�x4 + 2�D12 + 2D66�
�4


�x2�y2 + D22
�4


�y4 − �A55
�2


�x2 + A44
�2


�y2 

−

�h3

12

�2

�t2 ��2
� + �A55
�2w

�x2 + A44
�2w

�y2 
 = 0 �88�

− 
A55
�2w

�x2 + A44
�2w

�y2 � + �h� �2w

�t2 
 + 
A55
�2


�x2 + A44
�2


�y2 � = 0

�89�

8.2.2 Boundary Conditions for Illustrative Examples (Free Vi-
bration Analysis). The boundary conditions are same as those
given by conditions �71�–�77�.

8.2.3 Solution of the Illustrative Examples (Free Vibration
Analysis). The following functions 
 and w satisfy the boundary
conditions �71�–�77�


 = �
m=1,2

�

�
m=1,2

�

�mn sin�m
x

a

sin�n
y

b

sin��mnt� �90�

w = �
m=1,2

�

�
m=1,2

�

Wmn sin�m
x

a

sin�n
y

b

sin��mnt� �91�

where �mn, Wmn are constants and �mn is the circular frequency of
vibration associated with mth mode in the x-direction and nth

Table 4 Comparison of nondimensional natural frequencies
�̂mn of simply supported isotropic square plate: �̂mn

=�mnh�� /G; h /a=0.1, b /a=1.0; „E2=E1=E ,G12=G13=G23=G
= †E /2„1+�…‡ ,�12=�21=�=0.3…

m n

Nondimensional natural frequency �̂mn
by various theories

EXACTa Mindlina CPTa Presentb

1 1 0.0932 0.0930 0.0955 0.0930
1 2 0.2226 0.2219 0.2360 0.2219
2 2 0.3421 0.3406 0.3732 0.3406
1 3 0.4171 0.4149 0.4629 0.4149
2 3 0.5239 0.5206 0.5951 0.5206
1 4 — 0.6520 0.7668 0.6520
3 3 0.6889 0.6834 0.8090 0.6834
2 4 0.7511 0.7446 0.8926 0.7447
3 4 — 0.8896 1.0965 0.8897
1 5 0.9268 0.9174 1.1365 0.9174

aTaken from Ref. �13�.
bResults using NFSDT-I and NFSDT-II.

Table 5 Comparison of nondimensional natural frequencies
�̄mn of simply supported orthotropic rectangular plate: �̄mn

=�mnh�� /Q11; h /a=0.1, b /a=1.0; „E2 /E1=0.52500,G12/E1
=0.29281,G13/E1=0.17809,G23/E1=0.29713,�12=0.44046,�21
=0.23124…

m n

Nondimensional natural frequency �̄mn
by various theories

EXACTa Mindlina CPTa Presentb

1 1 0.0474 0.0474 0.0497 0.0477
1 2 0.1033 0.1032 0.1120 0.1040
2 1 0.1188 0.1187 0.1354 0.1197
2 2 0.1694 0.1692 0.1987 0.1721
1 3 0.1888 0.1884 0.2154 0.1898
3 1 0.2180 0.2178 0.2779 0.2195
2 3 0.2475 0.2469 0.3029 0.2519
3 2 0.2624 0.2619 0.3418 0.2672
1 4 0.2969 0.2959 0.3599 0.2978
4 1 0.3319 0.3311 0.4773 0.3332

aTaken from Ref. �32�.
bResults using NFSDT-I and NFSDT-II.
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mode in the y-direction.
Using expressions �90� and �91� in the governing Eqs. �88� and

�89� one obtains two equations which are written in matrix form
as follows:


k11mn
k12mn

k12mn
k22mn

���mn

Wmn
� − �mn

2 
m11mn
0

0 m22mn

���mn

Wmn
� = 
0

0
�
�92�

where

m11mn
=

�h3

12

�m


a

2

+ �n


b

2�

m22mn
= ��h�

Equation �92� is of a standard eigenvalue form, and solving it
one gets free vibration frequencies.

Here it is observed from Eq. �92� that bending and shearing
components are inertially uncoupled, but are elastically coupled.

Results in terms of nondimensionalized free vibration frequen-
cies �̂mn, �̄mn are tabulated in Tables 4 and 5.

The definitions used for nondimensionalized frequencies are

�̂mn=�mnh�� /G for isotropic plate and

�̄mn=�mnh�� /Q11 for orthotropic plate

9 Discussion on Results
The present theories have been applied to various problems to

bring out their effectiveness. It is to be noted that square plate is
an important case of rectangular plate analysis so square plate is
considered for illustrative problems. The new theories are applied
to solve the following problems.

1. Static analysis of simply-supported square plate

�a� Isotropic plate under sinusoidal load �results: Table 1�
�b� Isotropic plate under uniformly distributed load �results:

Table 2�
�c� Orthotropic plate under uniformly distributed load �re-

sults: Table 3�

2. Free vibration analysis of simply-supported square plate

�a� Isotropic plate �Results: Table 4�
�b� Orthotropic plate �Results: Table 5�

It is to be noted that both the theories NFSDT-I and NFSDT-II
give exactly the same results, therefore results given by present
theories are presented under single column. Shear correction fac-
tor used for the analysis is 5 /6.

9.1 On Static Analysis Results

9.1.1 On Stress Results. Tables 1–3 give the static analysis
results for illustrative static analysis problems. Stresses �x, �y,
and �zx ��zx is calculated using equations of equilibrium� obtained
by present theories are same as those corresponding stresses ob-
tained using CPT, and which are in excellent agreement with exact
theory results.

9.1.2 On Displacement Results. Table 1 gives results for prob-
lem of simply supported isotropic square plate �b /a=1,h /a
=0.1� under sinusoidal loading. Displacement results are in very
good agreement with exact theory results �having maximum error
of 0.62% only�, whereas CPT has maximum error of −4.82% with
respect to exact theory results. RPT gives almost same results as
those given by present theories.

Table 2 gives results for problem of simply supported isotropic
square plate under uniformly distributed loading. Errors �with re-
spect to exact theory� in displacement results increase with in-

crease in plate thickness for all the theories �i.e., CPT, Reissner’s
theory, and present theories� as expected. Results of displacements
for Reissner’s theory and present theories are nearly same and are
in good agreement with results by exact theory.

Table 3 gives results for problem of simply supported orthotro-
pic square plate under uniformly distributed loading. CPT results
are not satisfactory as expected. Results for present theories are in
good agreement with exact theory results. Here, results by Reiss-
ner’s theory are marginally better than the results from present
theories.

9.2 On Free Vibration Analysis Results

9.2.1 On Isotropic Plate Results. Results are tabulated in
Table 4. As mode number increases the error with respect to exact
theory increases for all three plate theories �i.e., CPT, FSDT, and
present theories� as expected. Frequency values for FSDT and
present theories are more or less same, which are in good agree-
ment with exact theory results. Whereas, results using CPT are not
satisfactory.

9.2.2 On Orthotropic Plate Results. Results are tabulated in
Table 5. In case of orthotropic plate, the results are having similar
trend as observed for isotropic plate. But, for orthotropic plate the
results using FSDT are on lower side of exact theory results,
whereas results using present formulation are on higher side of
exact theory results.

10 Concluding Remarks
In this paper, two new displacement based, first-order shear

deformation theories have been introduced. The effectiveness of
the theories is brought out by applying them for static as well as
dynamic analysis. The results obtained using both the theories are
found to be in excellent agreement with the exact theory �33�.

The following points need to be noted in respect of present
NFSDT-I and NFSDT-II theories.

1. Use of the present theories results in two governing differ-
ential equations, wherein one is a fourth order differential
equation, and another one is a second order differential
equation.

�a� In the case of NFSDT-I, the equations are only iner-
tially coupled and there is no elastic coupling at all.

�b� In the case of NFSDT-II, the equations are only elas-
tically coupled and there is no inertial coupling at all.

Yet, the results obtained by both theories are same, as the
degrees of freedom allowed in displacement fields are same.

2. The number of unknown functions involved in NFSDT-I and
NFSDT-II is only two. Even in the Mindlin’s theory �a first-
order shear deformation theory� three unknown functions are
involved.

3. Both the displacement based theories are variationally con-
sistent.

4. The theories �especially NFSDT-I� have strong similarity
with the classical plate theory in many aspects �in respect of
a governing equation, boundary conditions, moment expres-
sions�. Also, CPT comes out as a special case of NFSDT-I.

5. The finite elements based on NFSDT-I and NFSDT-II would
be interesting to study.

6. The unique feature of NFSDT-I is that, if applied to lami-
nated plate, it will give rise to elastically uncoupled equa-
tions, which is not possible by any other theory.

But, to get proper shear contribution, in case of laminated
plate analysis research needs to be carried out on, shear
correction factor on the lines of Refs. �34–36�.

7. It is to be noted that, CPT predicts stresses and moments
accurately, where as free vibration frequency and displace-
ment results using CPT are not satisfactory. Present theories
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though give same expressions for stresses and moments as
that of CPT, results for frequency and displacement have
substantial improvement over CPT.

In conclusion, it can be said that simple new first-order shear
deformation theories NFSDT-I and NFSDT-II can be effectively
used for plate analysis.
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An Efficient Approach to Estimate
Critical Value of Friction
Coefficient in Brake Squeal
Analysis
Automotive brake squeal generated during brake applications has become a major con-
cern in automotive industry. Warranty costs for brake noise related complaints have been
greatly increasing in recent years. Brake noise and vibration control are also important
for the improvement of vehicle quietness and passenger comfort. In this work, the mode
coupling instability mechanism is discussed and a method to estimate the critical value of
friction coefficient identifying the onset of brake squeal is presented. This is achieved
through a sequence of steps. In the first step, a modal expansion method is developed to
calculate eigenvalue and eigenvector sensitivities. Different types of mode couplings and
their relationships with possible onset of squeal are discussed. Then, a reduced-order
characteristic equation method based on the elastically coupled system eigenvalues and
their derivatives is presented to estimate the critical value of friction coefficient. The
significance of this method is that the critical value of friction coefficient can be predicted
accurately without the need for a full complex eigenvalue analysis, making it possible to
determine the sensitivity of system stability with respect to design parameters
directly. �DOI: 10.1115/1.2423037�

Keywords: brake squeal, mode coupling instability, eigenvalue veering, mode merging,
reduced-order characteristic equation

1 Introduction
For the last several decades, research on brake vibration and

noise has been conducted using theoretical, experimental, and nu-
merical approaches. In theoretical investigations, the complicated
brake system has to be considerably simplified. Though these sim-
plified models can provide some good insight into understanding
the mechanism of brake squeal, they often do not provide accurate
simulation for practical braking systems applications. Experimen-
tal approaches have also been widely used to measure the brake
frequencies and mode shapes for the system in squeal, to investi-
gate the effects of different parameters and operating conditions,
and to verify possible solutions that can eliminate or significantly
delay the onset of squeal. Accelerometer and double-pulsed laser
holographic interferometry are two effective tools for determining
the vibration mode shapes and forced response. However, the ex-
periments are mostly expensive and time consuming. Further-
more, the remedies found from experimental study on one specific
brake system may not be applicable to another type of brake sys-
tems. The numerical methods, on the other hand, are able to in-
clude more detailed brake component models along with the pres-
ence of friction. The frequencies and mode shapes of the
components are first obtained through a finite element analysis
�1,2� or assumed modes method �3,4�, and the component models
thus constructed are then coupled together into one brake system
model through the normal contact and friction tractions at the
braking surface. The resulting linear model equations are solved
by a complex eigenvalue analysis and the influences of design
parameters on the onset of brake squeal are investigated. Hamabe
et al. �5� and Nack �6� directly performed a complex eigenvalue
analysis of a finite element model of a brake assembly including

the friction force, without reducing the total number of degrees of
freedom. An excellent review on the status of brake squeal re-
search is available in the work of Kinkaid et al. �7�.

Substantial research on brake squeal has been conducted
through numerical approaches. However, there are only a few
works that investigate the brake squeal problem with sensitivity
analysis though this powerful tool is widely used in many fields.
The obstacle to conducting a comprehensive sensitivity analysis
partially lies in the unknown explicit relationships between physi-
cal design variables and the level of system instability. Generally,
the existence of complex eigenvalues with positive real parts in-
dicates the presence of instability and the magnitude of the real
part is used to represent the level of system instability �or squeal
propensity�. Since the eigenvalues are determined by a complex
eigenvalue analysis and the eigenvalues with positive real parts
are complex, it is very difficult to establish quantitative relation-
ships between design parameters and the real parts of complex
eigenvalues. By evaluating the stability from the mode coupling
standpoint, Chung et al. �8� presented a new analysis method for
brake squeal and defined the convergence rate as the stability
metric.

It is a well known fact that a high friction coefficient increases
the likelihood of squeal occurrence. It is found that the critical
value of friction coefficient ��cr� can be used as a measure of the
degree of system instability. The smaller the critical value of �,
the more is the system prone to instability and likely to exhibit
unstable response. In addition, the fact that �cr is always real can
be used to advantage to simplify the sensitivity analysis.

In this work, a reduced-order characteristic equation method is
presented to estimate the critical value of friction coefficient. First
a modal expansion method is developed to calculate the partial
derivatives of eigenvalues with respect to two parameters. The
couplings between the system modes as a function of the system
parameters are discussed on the basis of these partial derivatives.
Modes showing “curve crossing” and “veering away” in eigen-
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value loci �9� are shown to be unlikely to merge in a modal cou-
pling and thus be immune from squeal, while modes showing
“veering towards” are candidates for producing squeal. A reduced-
order characteristic equation method is then developed to accu-
rately predict the onset of squeal based on the elastically coupled
structure’s frequencies and their derivatives. Here, an “elastically
coupled system” refers to the case when the friction coefficient is
assumed zero, thus signifying that the brake components are not
undergoing any relative motion. Once the changes in frequencies
and their derivatives due to variation of system parameters are
obtained at �=0, �cr can be estimated without constructing new
system models. This makes it possible to save great efforts in the
study of sensitivity of system stability boundary with respect to
design parameters. The examples of using this method to estimate
the frequency loci and stability boundaries are given for a drum
brake system. We should note that the reduced-order characteristic
equation can be viewed as a way to develop an asymptotic ap-
proximation to the eigenvalue loci for eigenvalues that are likely
to coalesce. We should also note that the finite element packages
ABAQUS and NASTRAN have become quite capable of performing a
complex eigenvalue analysis. The value of the present work lies in
performing an analysis as a function of the model system param-
eters, thereby providing insights into the dependence of propen-
sity to squeal on system parameters. As an example, the approach
can clearly identify the modes that can merge to lead to coupled-
mode instability and how the design parameters influence this
modal coupling. It also provides sensitivity of eigenvalues and
modes to design parameters and thus an ability to perform design
optimization.

2 Derivatives of the Eigensolutions
The nominal eigenvalue problem corresponding to a coupled

drum brake system for a set of parameters was derived in Ref.
�10� and is shown below

Lun
0 = �n

0un
0, n = 1,2, . . . ,N �1�

Here un
0 and �n

0 are the eigensolutions, and

L = K + k0A + �0k0B �2�

In this equation, matrix K is an N�N stiffness matrix for the
uncoupled brake components �e.g., the drum and the two shoes�,
matrix A is the stiffness contribution due to the lining and matrix
B results from the friction coupling between the drum and the
shoes. The parameters k0 and �0 denote the lining stiffness and
friction coefficient of the nominal system, respectively. Here the
lining stiffness distribution at the drum-shoe interface can be non-
uniform, and the factor k0 is scaled to the order of 1 �10�. It should
be noted that K and A are symmetric whereas B is asymmetric due
to the nonconservative nature of the friction coupling forces. Fur-
thermore, the system with matrix B neglected, or �0 set to zero,
corresponds to the elastically coupled system case when the brake
is not rotating and the components are only coupled by normal
stiffness of the lining. Such eigenvalue problems that are linearly
dependent on parameters also arise in other engineering applica-
tions such as flow-induced vibrations in structures conveying flu-
ids �11� and in aeroelastic instabilities of structures �12�.

The adjoint eigenvalue problem associated with the nominal
system in Eq. �1� is

L*�n
0 = �n

0�n
0, n = 1,2, . . . ,N �3�

where L*=K+k0A+�0k0BT. It is assumed that the eigenvectors
and their adjoints are normalized to satisfy the biorthogonality
condition

�m
0Tun

0 = �mn = �1, m = n

0, m � n
� �4�

The sensitivity analysis requires derivatives of the eigenvalues
and eigenvectors with respect to the system parameters of interest.

Rudisill and Chu �13� presented two numerical methods for an
eigenvalue sensitivity analysis: an iterative method and an alge-
braic method. Perkins and Mote �9� used a modal expansion
method to calculate the derivatives with respect to one parameter.
Though the algebraic method is efficient, the modal expansion
method provides some physical interpretations and may be used to
investigate the coupling of the modes. Here the modal expansion
approach is extended to calculate the derivatives of the eigenso-
lutions with respect to two parameters. Note that the same ap-
proach can be used for systems with more than two parameters.

The elastically coupled system will be used in this work as the
nominal system. The eigensolutions of this self-adjoint system
�since B=0� can be computed reliably and verified by experimen-
tal approaches. Hence, the unperturbed system is chosen to be the
system without friction, the derivatives of the eigenvalues at �0
=0 will be calculated, and the sensitivity analysis will be con-
ducted based on the information for an elastically coupled model.

Let k=k0+�k and �=�0+��=��, where �k and �� denote small
perturbations in lining stiffness and the friction coefficient, respec-
tively, so that the system is still stable. The change in the mass
matrix is assumed to be negligible. The perturbed eigenvalue
problem then becomes

�L0 + l�un = �nun �5�

where L0=K+k0A, and the perturbation matrix l is

l = �kA + ��k0B + �k��B �6�

For a precritical value of �, let the perturbed eigenvectors be
expressed as a linear combination of unperturbed eigenvectors

un = �
j=1

N

cnjuj
0 �7�

Substituting Eq. �7� into Eq. �5�, premultiplying by vm
T , and

using Eq. �4� give

cnm��n − �m
0 � = �

j=1

N

cnj��kEkmj + ��E�mj + �k��E�kmj� �8�

where

Ekmj = �m
0TAuj

0

E�mj = �m
0T�k0B�uj

0 �9�

E�kmj = �m
0TBuj

0

From above, it is clear that Ekmj =Ekjm due to the symmetry of
matrix A.

Consider the following power series expansions for cnm and �n
with respect to the parameters k and �

cnm = cnm
0 + ���cnm,� + �kcnm,k�

+ ���
2 cnm,�2 + ���kcnm,�k + �k

2cnm,k2� + ¯ �10�

�n = �n
0 + ����n,� + �k�n,k� + ���

2 �n,�2 + ���k�n,�k + �k
2�n,k2� + ¯

�11�

where for s�0, t�0

�n,�skt =
1

s!t!

��s+t��n

��s�kt

Substitution of Eqs. �10� and �11� into Eq. �8� yields

�cnm
0 + ���cnm,� + �kcnm,k�

+ ���
2 cnm,�2 + ���kcnm,�k + �k

2cnm,k2� + ¯ �

����n
0 − �m

0 � + ����n,� + �k�n,k�

+ ���
2 �n,�2 + ���k�n,�k + �k

2�n,k2� + ¯ �
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= �
j=1

N

�cnj
0 + ���cnj,� + �kcnj,k�

+ ���
2 cnj,�2 + ���kcnj,�k + �k

2cnj,k2� + ¯ �

���kEkmj + ��E�mj + �k��E�kmj� �12�
Equating the terms of the same orders in Eq. �12� gives

cnm
0 = cnm,�0k0 = �nm �13�

and for s�0, t�0 or t�0,s�0

cnn,�skt = 0 �14�

cnm,�skt =
1

�n
0 − �m

0 ��
j=1

N

�cnj,�s−1ktE�mj + cnj,�skt−1Ekmj

+ cnj,�s−1kt−1E�kmj� − �
i,j

*cnm,�ikj�n,�s−ikt−j	, n � m

�15�

�n,�skt = �
j=1

N

�cnj,�s−1ktE�nj + cnj,�skt−1Eknj + cnj,�s−1kt−1E�knj�

�16�

where �i,j
* in Eq. �15� implies summation with the indices over the

range: 0	 i	s ,0	 j	 t, and 0
 i+ j
s+ t. It is also implied that
cnm,�ikj =0,�n,�ikj =0, if i
0 or j
0 on the right hand side of Eqs.
�15� and �16�.

It is assumed that there are no repeated eigenvalues for the
unperturbed system, i.e., �n

0��m
0 , which is typically true for

coupled brake systems at �=0. If the eigenvalues are repeated,
other methods such as revised series expansions �14� and the ex-
tension of Nelson’s method �15� may be used to calculate the
derivatives of eigensolutions. Detailed references can be found in
Refs. �16,17�.

With a way to compute eigenvalues and eigenvectors as a func-
tion of system parameters, we now turn to a discussion of cou-
pling of modes that is the essential mechanism for coupled-mode
instability in elastic systems with follower and gyroscopic forces
�16,17�.

3 Mode Coupling in the Discretized System
In the presence of both lining stiffness and friction coupling

�i.e., k0 and �0 are greater than zero in Eq. �1��, the eigenvalues �n
are no longer guaranteed to be real since matrix B is not sym-
metrical. The existence of complex roots with positive real parts
indicates the presence of a “mode-merging” instability, which can
lead to brake squeal vibrations. A typical situation in eigenloci
merging is illustrated in Fig. 1 �10�. As the friction coefficient is
increased, the two undamped frequencies come close to coalesce
and the corresponding mode shapes of the brake system become
identical at �=�cr. The value of friction coefficient � that demar-
cates the possible stable and unstable oscillations will be referred
to as a critical value of friction coefficient �cr.

Mode merging is typically observed to occur between two
neighboring or close modes. Their frequencies usually have small
separation at �=0. However, not all pairs of modes with small
separations come to merge even for a large value of �. The series
expansions in Eqs. �7�, �10�, and �11� for the perturbed eigenso-
lutions can help explain these phenomena.

3.1 Mode Coupling as a Function of Lining Stiffness. For a
pair of close eigenvalues �r

0 and �s
0 ��r

0
�s
0� of the unperturbed

system, let us consider the coupling between this pair of modes
and neglect the coupling between these two modes and the rest of
the structural modes. Then, the summations can be dropped in the

expressions for the second derivatives of eigenvalues. With this
simplification, the power series expansions for perturbed eigenso-
lutions with respect to the lining stiffness k for a precritical value
of � can be shown to become

�r = �r
0 + �kEkrr + �k

2EkrsEksr

�r
0 − �s

0 + h.o.t. �17�

�s = �s
0 + �kEkss + �k

2EkrsEksr

�s
0 − �r

0 + h.o.t. �18�

ur = ur
0 + �k

Eksr

�r
0 − �s

0us
0 + h.o.t. �19�

us = us
0 + �k

Ekrs

�s
0 − �r

0ur
0 + h.o.t. �20�

From Eqs. �19� and �20� it can be seen that Eksr provides a
measure of coupling between the rth and the sth perturbed modes
for the symmetric system. If Eksr=Ekrs=0, the rth mode and the
sth mode are uncoupled at the lowest order in �k as the lining
stiffness k is varied. From Eqs. �17� and �18�, if the two eigenfre-
quency loci or curves approach and cross as k changes, they sim-
ply intersect in a locally linear fashion, which is illustrated in Fig.
2�a�. In Fig. 2�b�, the inner products of the perturbed and unper-
turbed eigenvectors are plotted, which clearly shows that the two
modes are totally independent of each other. This case is referred
to as curve crossing. Since there is no coupling between the
modes, they are not expected to merge or lead to instability when
friction, and thus an asymmetric component in the stiffness ma-
trix, is included in the system model.

On the other hand, if Eksr=Ekrs�0, the rth mode and the sth
mode are coupled as lining stiffness k is varied. From Eqs. �17�
and �18�, if the two frequency loci approach each other, the lower
frequency locus �r��k� becomes increasingly concave downward
and the higher frequency locus �s��k� becomes increasingly con-
cave upward, as shown in Fig. 3�a�. The smaller the initial sepa-
ration between the frequency loci, the stronger the repulsion effect
is. The two loci approach and then diverge without intersection.
This locus divergence is referred to as curve veering away. Figure
3�b� shows that the two eigenvectors are almost interchanged dur-
ing veering in a rapid and continuous way, which is consistent
with Eqs. �19� and �20�. Since there exists a strong coupling be-
tween the modes, they are likely candidates for merging when
friction exists in the system �or is included in the model�.

Fig. 1 A typical occurrence of mode merging for a pair of
modes that leads to “coupled-mode” instability. The frequency
loci for the two frequencies as a function of the friction coeffi-
cient � merge at �=�cr and beyond this point, the two frequen-
cies are a complexconjugate pair. Here, only the real part of the
two frequencies is shown.
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3.2 Mode Coupling as a Function of Friction Coefficient.
Now for a pair of close eigenvalues �r

0 and �s
0 ��r

0
�s
0�, consider

the expansions of the perturbed eigensolutions with respect to the
friction coefficient � for a precritical case

�r = �r
0 + ��E�rr + ��

2 E�rsE�sr

�r
0 − �s

0 + h.o.t. �21�

�s = �s
0 + ��E�ss + ��

2 E�rsE�sr

�s
0 − �r

0 + h.o.t. �22�

ur = ur
0 + ��

E�sr

�r
0 − �s

0us
0 + h.o.t. �23�

us = us
0 + ��

E�rs

�s
0 − �r

0ur
0 + h.o.t. �24�

From Eqs. �9�, E�sr and E�rs are not guaranteed to be equal in
either magnitude or sign since matrix B is not symmetric. In the

absence of friction coupling between the pair of modes, we have
E�sr=E�rs=0. In this case, if two eigenfrequency loci or curves
approach each other as � is varied, they just intersect without
merging, as shown in Fig. 4�a�.

In the presence of friction coupling, two different cases must be
treated. When E�sr and E�rs are of same sign, E�rsE�sr / ��r

0−�s
0�


0 and E�rsE�sr / ��s
0−�r

0��0. The two frequency loci veer away
from each other as in the self-adjoint case. It is a repulsive cou-
pling and the modes do not lead to instability, as shown in Fig.
4�b�. When E�sr and E�rs are of opposite sign, the two frequency
loci veer towards each other when the friction is increased. In this
case the two modes can merge and lead to squeal, as shown in Fig.
4�c�. The rate of merging is influenced by two factors: the sepa-

Fig. 2 Frequency loci and inner products of eigenvectors as a
function of the lining stiffness k, showing curve crossing for
modes r and s. This corresponds to the case where Eksr=Ekrs
=0 in eigenvalue expressions in Eqs. „17… and „18….

Fig. 3 Frequency loci and inner products of eigenvectors as a
function of the lining stiffness k, showing “curve veering away”
for modes r and s when Eksr=EkrsÅ0 in Eqs. „17… and „18…

Fig. 4 Examples of eigenfrequency loci interactions for two
modes as the friction coefficient � is varied: „a… curve crossing,
„b… veering away, and „c… veering towards
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ration of the unperturbed frequencies and the magnitudes of E�sr
and E�rs. The latter quantities represent strength of friction cou-
pling between the two interacting modes. With small separation
and large magnitudes of E�sr and E�rs, the pair of modes is prone
to merging at a small value of �cr. It can be seen from Eqs. �23�
and �24� that a pair of eigenvectors ur and us can become more
similar as � is increased only when E�sr / ��r

0−�s
0� and E�rs / ��s

0

−�r
0� are of same sign.
Hence, when � is varied, the two modes showing curve cross-

ing and veering away do not merge, while the modes showing
curve veering towards are very likely to merge to result in squeal
if their separation is small and/or if sufficient friction coupling
exists.

It should be noted that Eqs. �17�–�24� are simplified versions of
the original expansions where the summations in terms such as
�r,�2 =� j=1,�r

N �E�jrE�rj / ��r
0−� j

0�� were dropped when the cou-
pling with other modes is neglected. In some cases this simplifi-
cation is not valid if other modes have a strong influence on this
pair of modes. This shows that the mode couplings among the
modes can become very complicated. In some cases, the higher
order perturbations also play an important role in mode merging.

4 The Reduced-Order Characteristic Equation
Method

Typically the order of the modal-based brake system model is
quite large �N�100�. Note that this number is different from the
degrees of freedom for any finite element model that may be
created for a brake system to investigate the stability of the system
and its propensity to squeal. This creates a formidable task of
studying coupling among a large number of modes for the predic-
tion of onset of squeal. The relationships between several system
parameters and brake squeal are also complicated. However, in
most cases the magnitudes and signs of E�sr and E�rs can be used
to predict whether the rth and the sth modes would merge �veer
towards� or not �cross or veer away�. The interactions between a
single pair of modes seem to have strong influence on mode merg-
ing and the two modes that are likely candidates for merging can
be identified by an analysis explained in Sec. 3. This inspires us to
now develop a method for squeal prediction by using the frequen-
cies and their derivatives at �=0, focusing on the eigenmodes that
exhibit the property of veering towards for the two modes under
consideration. In order to get a good prediction, the derivatives
from the full model will be used, as shown in Eq. �16�.

The natural thought of using frequency and derivative informa-
tion to predict �cr is to use the power series expansions of the
eigenvalues

�r = �r
0 + ��r,� + �2�r,�2 + �3�r,�3 + ¯

�25�
�s = �s

0 + ��s,� + �2�s,�2 + �3�s,�3 + ¯

through the eigenvalue derivatives found in the last section.
The intersection of the two curves produces an approximation

of the critical value of friction coefficient �cr. An example is
shown in Fig. 5, in which the frequency loci are estimated by
series expansions up to the second order and fourth order in �,
respectively. As the order of the eigenfrequency loci expansion is
increased, a better approximation is seen to be achieved.

The drawback of this approach is obvious: it does not reflect the
mode coupling between the modes, nor does it capture d�r /d�
=� at �=�cr. Consequently, the two frequency loci are free to
cross instead of merging. In addition, a critical value of � may be
predicted even for the cases in which the two modes may not
actually be coupled sufficiently to lead to mode merging. This is
because the eigenvalue expansions do not explicitly account for
the eigenvalue veering towards properties for the two frequency
loci. As a result, the power series approach does not appear to be

very useful for the prediction of mode merging and the estimate of
�cr is poor at best and erroneous in the worst case. A better
method to estimate �cr is needed.

The proposed approach in the following is based on the obser-
vation that the merging of two eigenfrequency loci is a situation in
which a double root arises as a function of the parameter �. Be-
yond the critical value of the parameter at which the frequencies
merge, the eigenfrequencies become complex. Thus, the eigenloci
pair that merges as a function of � must in some way form roots
of a quadratic equation that vary as a function of the other system
parameters. It is this quadratic equation that we need to extract
from the system characteristic equation and then approximate it as
a function of system parameters.

The characteristic equation for the full N-mode model is an Nth
order polynomial in � that can be factored into the following
form:

f���g��� = ��2 + b���� + c����
�
j=2

N

dj�
N−j� = 0 �26�

where the coefficients b��� and c��� are analytical functions of
the friction coefficient � as well as the other model parameters
�the dependence on these parameters is suppressed here for nota-
tional convenience�.

The coefficients b��� and c��� can be expressed in terms of
their truncated power series about �=0 as

b��� � �
i=1

M

bi�
i−1 �27�

c��� � �
i=1

M

ci�
i−1 �28�

where bi and ci are sets of M yet-to-be-determined coefficients,
with �hopefully� M �N. With this expansion, the factored polyno-
mial f��� with roots �r and �s is approximated by

f��� = �2 + �
i=1

M

�bi�
i−1�� + �

i=1

M

�ci�
i−1� = 0 �29�

Since f���=0 at every value of �, its total derivatives with
respect to � also vanish. Note that these expressions also involve

Fig. 5 Estimates of �cr by the power series expansion ap-
proach. Here �cr is defined by the intersection of approxima-
tions to the two eigenfrequency loci.
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the derivatives of the eigenvalues as well as the eigenvalues and
the coefficients bi and ci.

The coefficients bi and ci can be determined by matching
known values of �r, �s and their derivatives with respect to � at
�=0

f��r� = �r
2 + b1�r + c1 = 0

df��r�
d�

= 2�r�r,� + b1�r,� + b2�r + c2 = 0

d2f��r�
d�2 = 2�r,�

2 + 2�r�r,�2 + b1�r,�2 + 2b2�r,� + 2b3�r + 2c3 = 0

Combining these equations for the pair of roots �r and �s gives
the following:



1 �r 0 0 0 0

1 �s 0 0 0 0

0 �r,� 1 �r 0 0

0 �s,� 1 �s 0 0

0 �r,�2 0 2�r,� 2 2�r

0 �s,�2 0 2�s,� 2 2�s

]

�
2M�2M

�
c1

b1

c2

b2

c3

b3

]

�
2M�1

=�
− �r

2

− �s
2

− 2�r�r,�

− 2�s�s,�

− 2��r,��2 − 2�r�r,�2

− 2��s,��2 − 2�s�s,�2

]

�
2M�1

�30�

or

�D��ci

bi
� = �H� �31�

The unknown coefficients bi and ci can be solved explicitly
from Eq. �30� to produce for i=1,2 , . . . ,M

bi = − ��r,�i−1 + �s,�i−1�

ci = �
j=0

i−1

�r,�j�s,��i−1−j� �32�

Using the above, the roots of Eq. �29� define the two eigenvalue
loci. The coupling between modes r and s is clearly demonstrated
by this reduced-order characteristic equation. This coupling is
clearly seen to depend on the information about the roots and their
derivatives at �=0. With this approach, it is now very easy to see
the influences on mode merging of the separations between the
two frequencies and the derivatives at �=0.

Since �� /��=� at �=�cr �4�, the critical value of � is one for
which

� ��

��
�

�cr

= 0 �33�

Taking the derivatives of the reduced-order characteristic Eq.
�29� with respect to � and using Eq. �33� yield

�cr = −
1

2�
i=1

M

bi�cr
i−1 �34�

Substituting Eq. �34� into Eq. �29� yields an equation for �cr

��
i=1

M

�bi�cr
i−1�	2

= 4�
i=1

M

�ci�cr
i−1� �35�

Thus, �cr can be solved for numerically from the roots of poly-
nomial expression in Eq. �35�, giving an explicit approach to de-
termine the critical value of �. Note that the value of �cr could be
large and is not related to the smallness of the perturbation ��
used in Sec. 3. Furthermore, Eq. �35� can also be directly derived
from Eq. �28� as a condition of double roots without the interme-
diate steps in Eqs. �33� and �34�.

Setting M =3 in Eq. �35� and neglecting the terms which are
higher than second order in �cr, a simple expression for estimate
of �cr is obtained from the reduced-order characteristic equation

�cr =
1

4

�s
0 − �r

0

�− E�rsE�sr
�2 +

E�ss − E�rr

�− E�rsE�sr
	 �36�

This equation clearly shows that the squeal propensity of inter-
acting modes is strongly related to the mode shape coefficients
with respect to the friction coupling matrix �i.e., E�sr as defined in
Eq. �9�� and the initial eigenvalues separation at �=0. As dis-
cussed earlier, E�rsE�sr
0 is a necessary condition for merging
of a pair of modes. Here E�ss−E�rr is the difference in the slopes
of �s and �r at �=0, and typically the term �E�ss

−E�rr� /�−E�rsE�sr is negligible compared to 2. Hence, Eq. �36�
can be further simplified to:

�cr �
1

2

�s
0 − �r

0

�− E�rsE�sr

�37�

This relation shows that qualitatively, �cr is proportional to the
initial eigenvalue separation and is inversely related to the
strength of friction coupling.

5 Examples of Application of Reduced-Order Charac-
teristic Equation for Brake Squeal Prediction

The technique developed above for estimating the critical value
of friction coefficient �cr will now be applied to the mathematical
model of a light-duty truck drum brake system described in Ref.
�10�. This brake system model is based on the modal information
extracted from finite element models for the individual drum and
shoe components. The component models of the drum and brake
shoes are coupled through the shoe lining material, as detailed in
Ref. �10�. For this system, a total of 150 component modes were
incorporated into the coupled model. These include the first 50
modes each for the drum and two shoes. For this system, the
stiffness matrix K in Eq. �1� is composed of the individual com-
ponent stiffness or frequencies. The matrix A is the stiffness ma-
trix representing coupling due to the shoe lining that couples
modes of the drum to those of the two shoes. The matrix B results
from the tangential forces that are produced by friction at the
drum-lining interfaces.

The complex eigenvalue analysis of Eq. �1� was conducted us-
ing lining stiffness k=1.0. Here k is a normalized ratio of lining
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stiffness to nominal lining stiffness per unit area. The variation of
the frequencies �or the imaginary parts of eigenvalues in case of
complex frequencies� for modes 27–32 with the friction coeffi-
cient � is shown in Fig. 6.

Friction coupling coefficients E�sr and E�rs are also calculated
for several pairs of modes at k=1.0, and the results are listed in
Table 1. The predictions of the perturbation analysis above regard-
ing the merging or nonmerging of any pairs of modes were veri-
fied by the complex eigenvalue analysis. The coupling between
the pairs of modes under consideration is determined by the mag-
nitudes and signs of E�sr and E�rs. Note that, even though the
frequency separation between the modes 29 and 30 at �=0 is very
small, the mode 30 merges with mode 31 rather than with mode
29, as shown in Fig. 6. This is because the eigenloci for modes 30
and 31 veer towards and there is no coupling between the modes
29 and 30, as clearly shown in Table 1. Compared to modes 30
and 31, the frequency separation of modes 29 and 32 is larger and
their values of E�sr and E�rs are smaller. As a result, modes 29
and 32 merge at a critical value of � which is much larger than
that for modes 30 and 31. For modes 27 and 28, E�sr and E�rs are
of same sign and they veer away without merging.

Figure 7 shows the frequency loci for modes 30 and 31 at k
=1, as estimated by the reduced-order characteristic equation,
with the polynomials up to the second order �M =3� and fourth
order �M =5� in �. Compared to Fig. 5, the results of the same
order approximations are improved significantly. In this example,

the fourth order characteristic equation predicts almost exact fre-
quency loci, offering a very good estimation to �cr.

A more complicated example is shown in Fig. 8 for k=1.3.
Here, two pairs of modes merge at relatively large values of �.
The frequency loci for each pair of modes is estimated by the
reduced-order characteristic equation with M =5 in Eq. �29�.

The technique developed above can now be used to discuss the
system stability and its dependence on system parameters. First
note that at a given set of system parameters, the critical values of
� for all pairs of modes which tend to merge in the frequency
range of interest can be estimated, and the minimum �cr defines
the stability boundary for the drum brake model.

The lining stiffness is an important parameter which is known
to vary with changes in applied pressure and wear of the shoe
lining. Since lining stiffness affects the squeal propensity, it is
helpful to plot the stability boundaries over a range of lining stiff-
ness. The critical values of � that are solved from a full complex
eigenvalue analysis of the system equations are called “exact”
solutions here. These are shown as dashed curves in Fig. 9. The
regions above the curves are unstable since the corresponding
friction coefficients are greater than �cr. The critical values of �
estimated by using the reduced-order characteristic equation with
M =5 are shown as solid curves in Fig 9. The overall stability

Fig. 6 Variation of the frequencies of modes 27 to 32 with �
for a drum brake model „See Ref. †10‡…

Table 1 Mode coupling characteristics of different pairs of
modes for the drum brake model in Ref. †10‡

Mode pair E�sr E�rs Coupling Merging

27, 28 4.2e7 9.6e7 Veering
away

No

29, 30 0.16 1.13 No
coupling

No

29, 32 2.0e7 −7.1e6 Veering
towards

Yes

30, 31 −3.3e7 4.6e7 Veering
towards

Yes

31, 32 0.79 −0.11 No
coupling

No

Fig. 7 Estimate of �cr by the reduced-order characteristic
equation for modes 30 and 31 in Fig. 6 for the drum brake sys-
tem „see Ref. †10‡…. The exact results are from the complex
eigenvalue analysis, whereas the approximate eigenfrequency
loci are based on approximation in Eq. „29….

Fig. 8 Estimate of �cr by the reduced-order characteristic
equation for the drum brake model in Ref. †10‡ with increased
lining stiffness. k=1.3.
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boundary is made up of several segments corresponding to differ-
ent pairs of modes merging to cause squeal. The estimated curves
of �cr over the lining stiffness range closely match the exact
curves. Generally the results may be improved with a larger M.
However, this reduced-order characteristic equation method gives
satisfactory estimates to the frequency loci and �cr with a rela-
tively small M.

To further illustrate the value of this approach for estimating the
stability boundaries, the estimated �cr using Eq. �36� and exact �cr
from the complex eigenvalue analysis for a few sample values of
lining stiffness are listed in Table 2. Since Eq. �36� neglects the
influences of higher order derivatives, this simple expression
works well if the influence of higher order derivatives on the
merging is small.

6 Conclusions
Brake squeal is often analytically studied by either a complex

eigenvalue analysis of linearized models of the brake assembly or
by a transient analysis of the nonlinear system. In this work, a new
method called the reduced-order characteristic equation method is
presented based on the eigenvalues and their derivatives at �=0.
The method is then used to predict the onset of squeal. To evaluate
the partial derivatives of eigenvalues and eigenvectors, a modal
expansion method is utilized. The following conclusions can be
drawn from the study.

�1� The eigenvalue derivatives can be used to study mode cou-
plings between the various modes of the linear brake model. Gen-
erally, for a pair of close eigenvalues, two modes showing curve
crossing have no coupling, and two modes showing curve veering
away have coupling but it does not lead to coupled-mode insta-
bility. The modes showing curve veering towards are very likely
to merge to cause squeal if there is sufficient friction coupling.
Eigenvector sensitivity clearly shows the difference between ei-
genvalue loci crossing and loci veering.

�2� The reduced-order characteristic equation gives very good
estimates to �cr without requiring complete solution of the full
complex eigenvalue problem. This method can accurately predict
the stability boundaries. It can be used to study the influences of
frequency separation and eigenvalue derivatives at �=0 on the
occurrence of brake squeal. When the changes in frequencies and

their derivatives due to variation of system parameters are deter-
mined at �=0, �cr can be estimated without constructing new
system models. This greatly facilitates the sensitivity analysis of
system stability with respect to physical design parameters.

�3� A simple explicit expression of �cr involving eigenvalues
and derivatives at �=0 up to the second order clearly shows how
eigenvalue separation and friction coupling influence the magni-
tudes of �cr.
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Table 2 A comparison of estimated and exact �cr for the drum
brake model in Ref. †10‡. The estimates are based on the
reduced-order characteristic equation method where as the ex-
act value is based on the complex eigenvalue analysis of the
full drum brake model.

Lining stiffness Estimated �cr Exact �cr

0.7 0.051 0.051
0.8 0.011 0.012
0.9 0.035 0.036
1.0 0.080 0.079
1.1 0.133 0.124
1.2 0.202 0.176

Fig. 9 Exact and estimated stability boundaries as a function
of the lining stiffness for the drum brake system in Ref. †10‡.
The stability boundaries are for different combinations of
modes that merge.
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Friction Induced Vibrations in
Moving Continua and Their
Application to Brake Squeal
Considerable effort is spent in the design and testing of disk brake systems installed in
modern passenger cars. This effort can be reduced if appropriate mathematical–
mechanical models are used for studying the dynamics of these brakes. In this context, the
mechanism generating brake squeal in particular deserves closer attention. The present
paper is devoted to the modeling of self-excited vibrations of moving continua generated
by frictional forces. Special regard is given to an accurate formulation of the kinematics
of the frictional contact in two and three dimensions. On the basis of a travelling Euler–
Bernoulli beam and a rotating annular Kirchhoff plate with frictional point contact the
essential properties of the contact kinematics leading to self-excited vibrations are
worked out. A Ritz discretization is applied and the obtained approximate solution is
compared to the exact one of the traveling beam. A minimal disk brake model consisting
of the discretized rotating Kirchhoff plate and idealized brake pads is analyzed with
respect to its stability behavior resulting in traceable design proposals for a disk
brake. �DOI: 10.1115/1.2424239�

Keywords: friction induced vibrations, moving media, brake squeal, minimal model

1 Introduction
Most of the commonly used brake systems in cars, trains, air-

planes, and several industrial machines generate the brake force
by friction. Noises possibly generated by the brake are usually
unwanted; they may occur due to a transfer of the kinetic energy
of the part being decelerated to vibrations of the brake system. It
has become generally accepted by engineers and researchers
working in the field of brake noise that brake squeal is generated
by friction induced self-excited vibrations of the brake system.
The noise-free configuration of the self-excited brake system loses
its stability, the system then starts oscillating with audible fre-
quencies and reaches a limit cycle.

The cause of the energy transfer and therefore the mechanism
generating brake squeal has been put forward on different
grounds. A broad overview of brake squeal and possible excitation
mechanisms is given in Ref. �1�. A more general review of friction
induced vibrations is the comprehensive review paper by Ibrahim
�2�. The most popular explanations for brake squeal are the exci-
tation due to nonconstant friction coefficients, especially a friction
characteristic depending on the relative velocity between the con-
tact points and flutter type instabilities due to nonconservative
forces in the contact area which may even occur with constant
parameters. The authors believe that the latter one is a more real-
istic cause of brake squeal even though it is known from experi-
ments that the parameters of the system may vary with time, tem-
perature, and wear. Given that an instability can be modeled with
constant parameters, it is assumable that the instability may even
occur in a real brake system with constant friction coefficient once
the other parameters reach the unstable region and vary only
slowly compared to the oscillation period of the system.

Commonly used disk brake models, i.e., multi-body systems
and finite element models �FEM�, have high numbers of degrees
of freedom. However one of the problems in modeling brake
squeal is the basic formulation of the contact mechanism, in par-

ticular also of its kinematics, and its integration into the models.
There are several papers describing instability mechanisms due to
frictional contact involving vibrations of continuous systems.
Ouyang and Mottershead �3� studied the dynamic instability of an
elastic disk under the action of a rotating friction couple and pro-
posed the model to demonstrate a mechanism for unstable vibra-
tions of a car disk brake. The main restrictions of this model are
the simplified kinematics at the contact point and the exclusion of
friction forces acting in the radial direction of the disk. Ono et al.
�4� analyzed a head–disk interface in a flexible disk drive and
considered friction at the contact points. Since this work is fo-
cused on disk storage systems, the considered parameters and
some assumptions are far from the corresponding ones of a disk
brake. Furthermore, the kinematics of the disk and the evaluation
of the friction force are simplified as well. The transient dynamics
of a multi-degree of freedom friction oscillator and the application
to disk brake squeal was studied by Kinkaid et al. �5�. They mod-
eled the brake disk as a rigid body sliding under a brake pad and
approximated the kinematics by neglecting any tilting motion of
the disk.

In Ref. �6� the authors gave a review of minimal models for the
explanation of disk brake squeal and introduced a new two degree
of freedom disk brake model which can easily be associated to a
real brake, to work out the details of an excitation mechanism.
This model represents the brake rotor as a rigid wobbling disk.
The intention of the present paper is to replace the wobbling rigid
disk by a rotating annular Kirchhoff plate without making any
simplifying assumptions concerning the kinematics of the fric-
tional contact, except for the assumption of point contact �this
model will be generalized in a later publication to the case of
distributed contact�.

An axially moving beam under frictional point contact is first
considered as a preliminary two-dimensional problem, to work
out the essential properties of the contact kinematics leading to
self-excited vibrations. Furthermore, the model will be used to
introduce a discretization scheme which will be applied to the
rotating Kirchhoff plate later on. Additionally, by analyzing the
equations of motion of the beam and the plate it becomes clear
that a two-dimensional consideration of the kinematics of a disk
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Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received September 14, 2005; final
manuscript received June 22, 2006. Review conducted by Oliver M. O’Reilly.

542 / Vol. 74, MAY 2007 Copyright © 2007 by ASME Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



brake is not adequate, i.e., the three-dimensional contact kinemat-
ics yield dissipative terms that cannot be observed in the existing
two-dimensional models.

2 Axially Moving Beam
In this section we describe the modeling of an axially moving

beam as depicted in Fig. 1. The beam is moving with a given
velocity q̇0�t� through two idealized massless “brake pads” sup-
ported by two prestressed linear springs �spring constant k, pre-
stress force N0�. The brake pads are constrained to move in the
vertical direction only. Coulomb friction occurs between the beam
and the brake pads. The traveling speed of the beam is assumed to
be large enough to avoid stick–slip phenomena. We discuss a Ritz
discretization method which will later be used in analogous form
for the rotating Kirchhoff plate. As the convergence of the Ritz
method is not obvious for systems with gyroscopic terms, such as
the axially moving beam or the rotating plate, a comparison of the
approximate solution with an exact solution seems useful. The
cartesian reference frame ex, ey, ez �coordinates x ,y ,z� is inertially
fixed and the frame ex̃, eỹ, ez̃ �coordinates x̃ , ỹ , z̃� moves axially
with velocity q̇0. The transverse displacement of points on the
neutral fiber of the beam is denoted by w�x , t� in the inertial frame
and by w̃�x̃ , t� in the moving frame. The relation x= x̃+q0 holds
and the following identities can be established easily

w�x,t� = w̃�x̃,t� �1�

�

� x̃
w̃�x̃,t� =

�

�x
w�x,t� �2�

d

dt
w̃�x̃,t� =

�

�t
w�x,t� + q̇0

�

�x
w�x,t� = ẇ�x,t� + q̇0w��x,t� �3�

where the partial derivatives are abbreviated by � /�x= ��� and
� /�t= �˙�. The neutral fiber of the beam is parameterized by

f�x,z,t� = z − w�x,t� = 0 �4�
of which we frequently use the gradient

�f�x,z,t� = −
�

�x
w�x,t�ex + ez �5�

and the unit vector in its direction

e��x,t� =
�f�x,z,t�
��f�x,z,t��

�6�

The equations of motion can be derived from Hamilton’s principle

��
t1

t2

�T − U�dt = −�
t1

t2

�W dt �7�

where

�W =�
0

L

F · �p dx �8�

is the virtual work of all forces not considered in U. Note that in
order to obtain the correct linear equations of motion, the position

vectors p to the points of actions of the forces F have to be exact
up to second order in w and its derivatives. The kinetic and the
potential energy of the beam are given by

T =
1

2
�A�

0

L

vM�x,t�2 dx �9�

and

U =
1

2
EI�

0

L

w��x,t�2 dx �10�

where vM is the velocity of a material point on the beam’s neutral
fiber.

2.1 Kinematics. Figure 2 shows the kinematics of the axially
moving beam in the region of the brake pads with the forces
acting on the beam and on the pads. In the following we will
derive the kinematics of the beam in a rather formal way. Even
though some geometric relations are intuitively determinable and
evident from the figures, the formal procedure is valuable since it
will be reused for the more complex kinematics of the rotating
plate later on.

The position vector from the origin O of the inertial system to
an arbitrary material point M on the neutral fiber of the beam is
given by

pM = OM = xex + w̃�x̃,t�ez �11�

Therefore the velocity of M is the derivative of pM with respect to
time in the inertial coordinate system

vM =
Nd

dt
pM = q̇0ex +

d

dt
w̃�x̃,t�ez �12�

where the superscript N denotes differentiation in the Newtonian
frame.

To calculate the virtual work Eq. �8� we need the position vec-
tors of the contact points and the contact forces. We concentrate
on the upper contact point P between beam and brake pad. The

point P̃ is the material point of the beam in actual contact with

material point P̄ of the brake pad. The notation and the calcula-
tions for the lower contact point Q are similar. The position vector

from the origin O to P̄ on the upper brake pad at x=a is given by

pP̄ = OP̄ = aex + zP̄ez �13�

and the position vector to the corresponding point P̃ of the beam
being in actual contact with the pad is

Fig. 1 Axially moving beam

Fig. 2 Kinematics and forces acting on the beam and on the
pads
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pP̃ = OP̃ = �a + �x̃P̃�ex + w̃�a + �x̃P̃,t�ez −
h

2
e��a + �x̃P̃,t�

�14�

Setting pP̄=pP̃ and solving for the two unknowns �x̃P̃ and zP̄,
yields

�x̃P̃ = −
h

2
w��a,t� + O�w2� �15�

zP̄ = −
h

2
+ w�a,t� −

h

4
w�2�a,t� + O�w3� �16�

where O�wn� contains all terms which are of order n or greater in
w and its derivatives. Using the fact that in Euler–Bernoulli theory
planar cross sections of the beam remain planar and orthogonal to

the neutral axis the velocity of P̃ is consequently given by

vP̃ = vM + �x̃P̃

�

�x
vM −

h

2
� Nd

dt
e��a,t� + �x̃P̃

�

�x

Nd

dt
e��a,t�� + O�w3�

�17�

The velocity of the material point of the pad vP̄ simply is

vP̄ =
Nd

dt
pP̄ = �ẇ�a,t� −

h

2
ẇ��a,t�ẇ�a,t��ez �18�

Analogously for Q we determine zQ̄, �xQ̃, vQ̃, and vQ̄.

2.2 Contact Forces. The forces at the contact point P can be
determined from a force balance at the brake pad and Coulomb’s
law of friction

RP̃ = − RP̄ = ��NP̃�eRP̃
�19�

where the direction of the friction force is given by the unit vector

eRP̃
=

vP̄ − vP̃

�vP̄ − vP̃�
�20�

The normal forces are perpendicular to the surface of the beam so
that

eNP̃
= e��a + �x̃P̃,t� �21�

is the unit vector in direction of the normal force. Note that the
forces NP and RP are defined as the normal and tangential com-
ponent of the contact force in the deformed configuration and
consequently read

NP = �NP̃� = N0 − kw�a,t� + �N0w��a,t� + O�w2� �22�

RP = �RP̃� = �NP �23�

The corresponding forces acting on Q̃ can be determined analo-
gously. The expressions containing eRP̃

can only be linearized if q̇0

is sufficiently large, i.e., h /2 � ẇ��a , t� � � q̇0 is assumed in the fol-
lowing. This can be seen from the linearized relative velocity
between the pad and the traveling beam at the contact point

vP̄ − vP̃ = − �q̇0 +
h

2
ẇ��a,t��ex − q̇0w��a,t�ez �24�

This assumption also implies that no stick–slip occurs since

�ẇ��a��
h

2
� q̇0 �25�

ensures that the relative velocity between the pad and the beam
does not vanish.

2.3 Solution. In this section we give a solution for the prob-
lem using a Ritz discretization approach. To get an idea of the
speed of convergence, we first solve the problem for the traveling

beam omitting the brake pads. In this case for q̇0=const the prob-
lem can be solved in closed form �see for example Ref. �7� for a
spectral or Ref. �8� for a wave propagation approach�. This exact
solution will be used to check the accuracy of the approximate
solution given below, to gain confidence in the convergence of the
method for gyroscopic systems.

We now introduce a method to determine the eigenvalues and
eigenfunctions approximately. We substitute the expression

w�x,t� = 	
i=1

I

Wi�x�qi�t� = 	
i=1

I

Wiqi �26�

with suitably assumed shape functions Wi�x� into Eq. �7�, obtain-
ing discretized expressions for the kinetic and potential energy on
the left hand side of Eq. �7�. The discretized equations of motion
are obtained from Lagrange’s equations

d

dt

�L

� q̇j

−
�L

�qj
= f j = 	

k

Fk ·
�vk

� q̇j

j = 1, . . . ,I �27�

where L=T−U is the Lagrangian. The complete linearized equa-
tions of motion read

	
i=1

I 
��A�
0

L

WjWi dx�q̈i + �q̇0�A�
0

L

�WjWi� − Wj�Wi�dx�q̇i�
+ ��

0

L

�EIWj�Wi� − q̇0
2�AWj�Wi��dx�qi

= �NP̃ + RP̃� ·
�vP̃

� q̇j

+ �NQ̃ + RQ̃� ·
�vQ̃

� q̇j

�28�

which is a system of equations of the form

Mq̈ + Gq̇ + Kq = 0 �29�

where the elements of the matrices are

mji = �A�
0

L

WjWi dx �30�

gji = �Aq̇0�
0

L

�WjWi� − Wj�Wi�dx �31�

kji = − �Aq̇0
2�

0

L

Wj�Wi�dx + EI�
0

L

Wj�Wi� dx + 2kWj�a�Wi�a�

− hk�Wj��a�Wi�a� + hN0�1 + �2�Wj��a�Wi��a�

−
h2N0�

2
Wj��a�Wi��a� �32�

As will be seen later on, the terms in the matrices of the beam’s
and plate’s equation of motion are quite similar. In order to com-
pare the results with the rotating Kirchhoff plate later on we carry
out the calculations using the first two eigenfunctions of the cor-
responding non moving clamped beam as shape functions. By
choosing a=L /2 we get

M = �A
�0

L

W1
2 dx 0

0 �
0

L

W2
2 dx� �33�
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G = �Aq̇0
 0 −�
0

L

�W2W1� − W2�W1�dx

�
0

L

�W2W1� − W2�W1�dx 0 �
�34�

K = 

− �Aq̇0

2�
0

L

W1�
2 dx + EI�

0

L

W1�
2 dx + 2kW1

2�a�

. . .

− hk�W2��a�W1�a�

−
h2N0�

2
W1��a�W2��a�

. . .

− �Aq̇0
2�

0

L

W2�
2 dx + EI�

0

L

W2�
2 dx + hN0�1 + �2�W2�

2�a�

�
�35�

since W1��L /2�=0, W2�L /2�=0, and W2��L /2�=0. In Eq. �29� the
matrix M is symmetric, G is skew symmetric, and K contains
asymmetric coupling terms, making the system susceptible to self-
excited vibrations.

2.4 Stability Analysis. In order to study the stability of the
trivial solution of Eq. �29� we substitute q�t�= q̂e�t and obtain the
characteristic equation

det�M�2 + G� + K� = 0 �36�

From the expansion theorem of the determinant it follows that the
coefficient a2I−1 of the characteristic polynomial

a2I�
2I + a2I−1�2I−1 + ¯ + a2�2 + a1� + a0 = 0 �37�

vanishes. This can be seen by considering that a2I originates from
the product of the terms on the main diagonal of �M�2+G�+K�.
Since the main diagonal of G consists of zeros the second nonzero
coefficient of Eq. �37� is a2I−2. Thus the Routh–Hurwitz criterion
states that the trivial solution of the system cannot be asymptoti-
cally stable and that not all of the eigenvalues of Eq. �29� can have
a negative real part. Provided that not all eigenvalues are purely
imaginary, we now show that the trivial solution is unstable. This
conclusion follows from a theorem proved by Karapetjan �9� and
Lakhadanov �10� independently. The ideas of the proof relevant
for the present problem will be stated in the following.

In the case where Eq. �37� has no purely imaginary roots, there
has to be at least one root with a positive real part. If there is a
purely imaginary root, Eq. �37� can be written as

��2 + ���b2I−2�2I−2 + b2I−3�2I−3 + . . . + b0� = 0 �38�

where ��0 and b2I−3=0. Now the same investigation can be
performed for

b2I−2�2I−2 + b2I−3�2I−3 + . . . + b0 = 0 �39�

Following this argument in an inductive manner and factoring out
all purely imaginary roots, we see from the Routh–Hurwitz crite-
rion that the remaining polynomial has to have a root with posi-
tive real part, i.e., the trivial solution is unstable.

A sufficient condition that the characteristic equation cannot
have only purely imaginary roots is a nonvanishing coefficient
corresponding to an odd power of �. For the case I=2 the coeffi-
cients of the characteristic polynomial are

a0 = k11k22 − k12k21 �40�

a1 = �k21 − k12�g21 �41�

a2 = m11k22 + m22k11 �42�

a3 = 0 �43�

a4 = m11m22 �44�

where a1 is nonzero when K is asymmetric. We now readily con-
clude for I=2 that the trivial solution of Eq. �29� is unstable for
any given parameter combination �, h, N0, k�0, requiring only
that K is asymmetric. Using more shape functions �I�2� the
trivial solution is unstable except for particular parameter combi-
nations restricted by the condition ai=0 for all odd i. This holds in
general for circulatory gyroscopic systems without damping. Note
that the absence of damping is an essential point in the argumen-
tation. This is the reason for the essential differences in the sta-
bility behavior in comparison with the rotating Kirchhoff plate
investigated in Sec. 3.

2.5 Comparison of the Exact and the Discretized Solution
for the Traveling Beam Without Brake Pads. For both ap-
proaches we introduce the dimensionless time 	=
t and length
x̄=x /L where 
2=EI /�AL4 and choose the dimensionless param-
eter v̄= q̇0 /L
=4. The discretized equations of motion for the
traveling beam are obtained from Eq. �28� setting the right-hand
side equal to zero. They are solved using q�	�=qe�	. The exact
solution is calculated as given in Ref. �7�, solving the boundary
value problem

ẅ + 2v̄ẇ� + v̄2w� + wIV = 0 �45�
with boundary conditions

w�0,	� = 0, w��0,	� = 0

w�1,	� = 0, w��1,	� = 0 �46�
and using

w�x̄,	� = e�x̄e�	 �47�
Figure 3 shows a plot of the eigenvalues obtained from the dis-
cretized method over the number of shape functions used. Obvi-
ously the eigenvalues are purely imaginary hence the real part is
not shown. The first frequencies already match closely if only a
few shape functions are used. Also when varying the dimension-
less speed of the beam from v̄=0 to v̄=2� �the critical speed, Ref.
�7�� the eigenvalues of the exact and the discretized approach still
coincide, as can be seen from Fig. 4, where only I=6 shape func-
tions are used for the discretized solution. Summarizing, the
method converges rapidly for the moving beam and due to the
similar structure, the same can be expected for the rotating plate.

3 Rotating Kirchhoff Plate
As mentioned above, the intention is to work out a possible

excitation mechanism of brake squeal with a simple model, which
still has an obvious relation to a technical disk brake system. In
Ref. �6� the authors presented a minimal model for the explana-

Fig. 3 Comparison of the exact „lines… and the approximate
solution „Ã…
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tion of brake squeal with the brake disk modeled as a wobbling
rigid body and showed that the self-excitation mechanism needs at
least two degrees of freedom. As mentioned in Ref. �6�, a possible
and obvious extension of the model is to replace the wobbling
disk by a rotating Kirchhoff plate discretized in an appropriate
way.

Figure 5 shows a rotating annular Kirchhoff plate in contact
with two idealized massless brake pads. The plate is driven by a
torque MAez, such that frame ex̃, eỹ, ez̃ �rigidly attached to the
nondeformed plate� rotates with the angular velocity q̇0ez rela-
tively to the inertial frame ex, ey, ez. Again, the brake pads are
supported by two prestressed linear springs �prestress N0, spring
constant k� and Coulomb friction occurs between the disk and the
brake pads. The displacement of points on the neutral plane can be
described by w̃�r ,� , t� with independent variables r, �, t and by
w�r ,
 , t� with independent variables r, 
, t. The relation 
=�
+q0 connects both representations. The identities

w�r,
,t� = w̃�r,�,t� �48�
and

�

�r
w̃�r,�,t� =

�

�r
w�r,
,t�

�

��
w̃�r,�,t� =

�

�

w�r,
,t�

d

dt
w̃�r,�,t� =

�

�t
w�r,
,t� + q̇0

�

�

w�r,
,t�

will be used to transform appearing expressions from material to
spatial coordinates. The neutral plane of the plate is parameterized
by the function f�r ,� ,z , t�=z− w̃�r ,� , t�=0, of which we will use
the gradient

�f�r,�,z,t� = −
�

�r
w̃�r,�,t�er −

1

r

�

��
w̃�r,�,t�e
 + ez �49�

and the unit vector in its direction

e��r,�,t� =
�f�r,�,z,t�
��f�r,�,z,t��

�50�

We now systematically derive the equations of motion using Eq.
�7�. Therefore we need the potential and kinetic energy of the
rotating plate

U =
1

2
D�

A

��2w̃�2 − 2�1 − ��� �2w̃

�r2 �1

r

�w̃

�r
+

1

r2

�2w̃

��2�
− �1

r

�2w̃

�r � �
−

1

r2

�w̃

��
�2�dA �51�

and

T =
1

2
�h�

A

vM
2 dA �52�

where vM is the velocity of a material point on the plate’s neutral
plane �11�. In order to calculate the virtual work Eq. �8�, which
now reads

�W =�
A

F · �p dA �53�

the virtual displacements �p of the upper and lower contact point
and the forces acting at these points will be determined in the
following subsections.

3.1 Kinematics. The kinematics of the rotating Kirchhoff
plate shown in Fig. 6 is basically a three-dimensional version of
the beam’s kinematics. The vector from the origin O to a point M
on the neutral plane is given by

pM = OM = rer + w̃�r,�,t�ez �54�

and the velocity of M consequently is

vM =
Nd

dt
pM �55�

= q̇0re
 +
d

dt
w̃�r,�,t�ez �56�

Similarly as for the axially moving beam, the calculation of the
virtual work Eq. �53� requires the determination of the vectors p
up to second order. The following calculations are exemplarily
shown for the contact point P between the disk and the brake pad.

In our notation P̃ is the material point of the disk in actual contact

with the point P̄ of the brake pad. The vector pointing from the

origin O to P̄ at r=r0 can be expressed as

pP̄ = OP̄ = r0er + zP̄ez �57�

The position vector from the origin to the material point P̃ coin-

ciding with P̄ at a certain instant

Fig. 4 Comparison of the exact and the approximate solution
for varying v̄

Fig. 5 Rotating Kirchhoff plate: model „left… and top view
„right…

Fig. 6 Kinematics of the plate „section in e�-ez- and er-
ez-plane…
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pP̃ = OP̃ = �r + �rP̃�er + r��P̃e
 + w̃�r + �rP̃,� + ��P̃,t�ez −
h

2
e�P̃

�58�

where

e�P̃
= e��r + �rP̃,� + ��P̃,t� �59�

is the unit vector normal to deformed neutral plane at MP̃. Setting
pP̄=pP̃ and carrying out a Taylor expansion for small �rP̃ and
��P̃ up to first-order terms, yields three linear equations for the
determination of �rP̃, ��P̃, and zP̄. Note that the unit vectors er
and e
 at MP̃ differ from those at M and have to be expanded in a
Taylor series as well. A second Taylor expansion of the results in
w̃�r ,� , t� and its derivatives yields

zP̄ = −
h

2
+ w̃�r,�,t� −

h

4r2� �

��
w̃�r,�,t��2

−
h

4
� �

�r
w̃�r,�,t��2

+ O�w̃3� �60�

�rP̃ = −
h

2

�

�r
w̃�r,�,t� + O�w̃2� �61�

��P̃ = −
h

2r2

�

��
w̃�r,�,t� + O�w̃2� �62�

The velocities of the points P̃ and P̄ are calculated from

vP̃ = vM + �rP̃

�

�r
vM + ��P̃

�

��
vM −

h

2
� Nd

dt
e��r,�,t���

+ �rP̃

�

�r

Nd

dt
e��r,�,t� + ��P̃

�

��

Nd

dt
e��r,�,t�� + O�w̃3�

�63�

and

vP̄ = żP̄ez �64�

respectively. The derivation for the contact at Q can be performed
analogously.

3.2 Contact Forces. The directions of the friction forces fol-

low from the relative velocities between the points P̃ �of the ro-

tating plate� and the point P̄ �of the brake pad� and correspond-

ingly between Q̃ and Q̄. The unit vector in the direction of the
friction force acting on the plate is

eRP̃
=

vP̄ − vP̃

�vP̄ − vP̃�
�65�

The normal forces are perpendicular to the surface of the plate.
Hence

eNP̃
= e��r + �rP̃,� + ��P̃,t� �66�

is the direction of the normal forces acting on the upper contact

point of the plate P̃. A force balance in ez direction �see Fig. 2�

− RPeRP̃
· ez − NPeNP̃

· ez − k�zP̄ +
h

2
� + N0 = 0 �67�

and Coulomb’s law RP=�NP yield the contact forces at P depend-
ing on w̃�r ,� , t� and its derivatives. Analogously to the beam, the
forces NP and RP are defined as the normal and tangential com-
ponents of the contact force in the deformed configuration. The
forces at Q are calculated similarly.

As mentioned above for the beam, the linearization of the equa-
tions of motion, especially of Eq. �65�, requires the exclusion of
stick–slip phenomena. For the linear case thus

h

2r
� �2

�
 � t
w�r,
,t��� q̇0r �68�

has to hold for all times. Note that typical vibration amplitudes for
a disk squealing with frequencies between 1 and 5 kHz are in the
range of micrometers. Assuming harmonic vibrations of the disk
with 2 kHz the realistic parameters used in the next section yield
a minimal rotational speed of approximately 0.3 min−1. Therefore
Eq. �68� is fulfilled down to very low speeds of the disk and
stick–slip should in general not be considered as a source of brake
squeal.

3.3 Approximate Solution. In the previous sections we de-
rived all necessary ingredients for Eq. �7�, so we can proceed with
the approximate solution scheme described in Sec. 2.3. We
substitute

w�r,
,t� = 	
i=1

I

qi�t�Wi�r,
� �69�

into Eq. �7�. The equations of the discretized system now can be
derived with Lagrange’s Eqs. �27� and the generalized forces

f j = MA

� q̇0

� q̇j

+ �RPeRP̃
+ NPeNP̃

� ·
�vP̃

� q̇j

+ �RQeRQ̃
+ NQeNQ̃

� ·
�vQ̃

� q̇j

�70�

are obtained from the virtual power of all forces and torques act-
ing on the plate. The general form of the linearized equations of
motion is quite lengthy but can be calculated easily.

In order to compare the present model with the one described in
Ref. �6�, we now consider brake pads at r=r0, 
=01 and using the
shape function

w�r,
,t� = Rm,n�r��q1�t�cos m
 + q2�t�sin m
� �71�

where Rm,n�r�=R�r� is the radial component of an eigenfunction
of the corresponding nonrotating plate. The quantities m and n
denote the number of nodal diameters and nodal circles, respec-
tively. Note that all boundary conditions of the rotating plate are
satisfied by the shape functions. Assuming the nonholonomic
constraint

q̇0�t� = � = const �72�

one obtains the necessary driving torque

MA = 2�r0N0 �73�

and the equation of motion linearized for small q1 ,q2 , q̇1 , q̇2 as

Mq̈ + Dq̇ + Kq = 0, q�t� = �q1�t� q2�t� �T �74�

with

M = �M 0

0 M
� �75�

D = 
1

2
�N0

h2

r0�
R��r0�2 2mM�

− 2mM� 0
� �76�

1Due to the symmetry of the system, the circumferential position of the pads is
arbitrary, i.e., it is always possible to transform the equations of motion to the de-
scribed form.
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K = 

kD − m2M�2 + 2kR�r0�2 + N0hR��r0�2

. . .

− �k
h

r0
mR�r0�2 −

1

2
�N0

h2

r0
3 m�r0

2R��r0�2 − r0R�r0�R��r0��

1

2
�N0

h2

r0
3 m�m2R�r0�2 + r0

2R��r0�2 − r0R�r0�R��r0��

. . .

kD − m2M�2 + �1 + �2�N0
h

r0
2m2R�r0�2

�
�77�

using the abbreviations

M = �h��
ri

ro

rR2�r�dr �78�

kD = 
m,n
2 M �79�

Since Rm,n�r�cos m
 and Rm,n�r�sin m
 form a pair of orthogonal
eigenfunctions of the corresponding nonrotating plate, 
m,n is the
circular eigenfrequency of this double mode.

3.4 Stability Analysis. The equation of motion Eq. �74� de-
serves closer attention. The matrix D Eq. �76� not only contains
the expected gyroscopic terms, but also an additional viscous
damping term. The gyroscopic terms are typical for moving or
rotating continua �7� and were observed in the equation of motion
of the beam Eq. �34� as well. The viscous damping term results
from the kinematics of the plate and the frictional contact between
the disk and the brake pads. It cannot be observed in two-
dimensional models, since it is due to the fact that the friction
force has a component in the radial direction of the disk, even
when the motion of the brake pad is restricted to the direction
normal to the undeformed plate. The corresponding energy dissi-
pation influences the stability of the trivial solution of Eq. �74�
significantly and should not be neglected by an assumed circum-
ferential direction of the friction forces. The asymmetry of the
matrix K Eq. �77� makes the system susceptible to self-excited
vibrations.

Since the described model is intended for the explanation of
brake squeal its parameters should be chosen such that it reflects a
real brake system. The corresponding realistic parameters of the
present two degree of freedom model

M = 0.50 kg, kD = 6.14 · 107 N/m, m = 3

r0 = 0.13 m, R�r0� = 0.35, R��r0� = 6.15 m−1

h = 0.02 m, � = 5� s−1, N0 = 2.00 kN

k = 6.00 · 106 N/m, � = 0.6

are based on the multi-body disk brake models described in Refs.
�12,13�. They represent an equivalent annular Kirchhoff plate with
parameters

�h = 126 kg/m2, D = 67,100 Nm, � = 0.3

ri = 0.025 m, r0 = 0.162 m

vibrating in a mode with three nodal diameters and one nodal
circle. Several of the parameters will be varied in the following, to
show their influence on the stability of the trivial solution of Eq.
�74�. All other parameters will be held constant unless mentioned
otherwise in the corresponding diagram.

Brake squeal usually occurs at low speed and relatively low
braking pressure, e.g., during a roll out in front of a traffic light.
Therefore the rotational speed of the brake disk is an important
parameter in matters of brake squeal. Substituting

q�t� = q̂e�t �80�
into the equation of motion Eq. �74� leads to an eigenvalue prob-
lem for �, where a positive real part of one of the eigenvalues
corresponds to an instability of the trivial solution. Figure 7 shows
the root locus of the eigenvalues for varying speeds of the brake
disk. Above a critical speed �c there exist eigenvalues with a
positive real part. That is to say, the trivial solution becomes un-
stable and the system shows self-excited vibrations, which can be
interpreted as squeal. This instability in the linear system implies
that the vibration amplitudes of the linearized system tend toward
infinity. However, the vibration amplitudes of a real brake system
are bounded and tend toward a limit cycle. This behavior can be
modeled by considering nonlinearities of the system, e.g., a hard-
ening spring characteristic of the brake pad �14,12�.

A common first step to improve the noise behavior of a brake
system is the modification of the pad’s back plate by adding
damping layers or a change of the friction material itself. The
parameter of the present model corresponding to the stiffness of
the friction material is k. The influence of k on the critical speed of
the system is shown in Fig. 8. The critical speed increases for
decreasing stiffness of the brake pads k. In contrast to that, the
critical speed does not significantly depend on the friction coeffi-
cient � for the present model.

In addition to the braking performance, the improvement of the

Fig. 7 Root locus for varying � „only eigenvalues with pos.
imag. part…

Fig. 8 Critical speed for varying k

Fig. 9 Critical speed for varying � and N0 but constant braking
torque „r0=0.13 m…
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noise behavior of the brake system is an important goal of the
manufacturer. Within the scope of the present model, the perfor-
mance of the brake system is given by the braking torque Eq. �73�
MA=2�r0N0. An important question is how �, r0, and N0 should
be chosen to improve the noise behavior of the system �i.e., to
increase the critical speed of the disk� without affecting the brak-
ing torque. Figure 9 shows the critical speed of the disk for vary-
ing � and N0, whereas r0 and MA are held constant. The graph
indicates that with this goal in mind the braking torque should be
generated by a high “brake pressure” N0 and a low friction coef-
ficient �. The dependence of the critical speed on r0 and N0 with
constant braking torque is shown in Fig. 10. As in Fig. 9, here the
critical speed also increases with increasing “brake pressure” for
constant brake torque. One can see that the brake disk should not
be too large in order to avoid very low critical speeds.

It is obvious that all the design proposals obtained from Figs. 9
and 10 conflict with the performance of the brake system. A low
friction coefficient � and a small radius r0 limit the capability of
the brake system in particular for emergency stops. It should be
mentioned that the presented stability results coincide with the
ones for the minimal brake disk model in Ref. �6�. Even an ex-
tended version of the model shows a qualitatively similar behavior
�see Ref. �14��, as long as the contact mechanism is modeled in
the presented way. In general the stability results strongly depend
on the chosen parameters. In particular the viscous damping due
to the kinematics influences the stability of the system signifi-
cantly. In contrast to the traveling beam problem, the presence of
damping renders the system asymptotically stable for certain pa-
rameter configurations, so that a stability boundary can be found.

4 Conclusions
Two cases of continuous systems in frictional point contact with

idealized brake pads are described in this paper. A discretization
scheme is introduced and its good convergence was shown for the

traveling beam. It is pointed out that a consistent minimal model
for the explanation of disk brake squeal has to consider the three-
dimensional kinematics of the brake disk. Even though an excita-
tion mechanism can be shown with two-dimensional problems
like the traveling beam or the simplified models from the literature
�3–5�, the more accurate formulation of the frictional contact in
the three-dimensional case yields additional dissipative terms. The
derived minimal disk brake model is an extension of the one pre-
sented in Ref. �6� and the stability behavior of the models coin-
cides. The analysis of the stability of the trivial solution shows the
influence of the brake’s design parameters.

The model is presently extended to distributed contact over
finite areas and also to include the in- and out-of-plane motions of
the brake pads. The equations of motion derived with the pre-
sented discretization scheme are well applicable for a model based
control of disk brake squeal. Furthermore, the minimal model can
be used to verify the contact formulation of more comprehensive
models, for example models based on a commercial FEM
formulation.
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Wrinkling of Plane Isotropic
Biological Membranes
The problem of the wrinkling of plane isotropic membranes characterized by a Fung type
constitutive model in biaxial tension has been formulated and solved within the frame-
work of finite strain hyperelasticity. The formulation follows the approach of Pipkin
[Pipkin, A.C., 1986, IMA J. Appl. Math., 36, pp. 85–99; 1994, ibid., 52, pp. 297–308],
and the out of plane geometric nonlinearities are treated as constitutive nonlinearities
through a modification of the elastic potential. The wrinkling criteria are based on the
natural contraction of a membrane in simple tension. Both the natural contraction and
the modified elastic potential are defined in closed form. The model has been imple-
mented in a finite element code and the numerical solution validated using study cases
with analytical solution. Applications are presented that simulate the response of
stretched membranes, where distinct regions of behavior (taut, wrinkled, and slack or
inactive) develop during loading, and a simple procedure of reconstructive surgery, char-
acterized by the excision of a circular portion of the skin and the suture of the wound
edges, where the wrinkling of the skin causes the extrusion of the edges (dog-ear
formation). �DOI: 10.1115/1.2424240�
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laxed energy density, reconstructive surgery

1 Introduction
Thin membranes, including biological membranes like the skin,

have very small and, in general, negligible flexural stiffness and
can be modeled as mathematical membranes. In such structures,
stress states characterized by negative principal components are
not admissible. In the presence of strains that would require com-
pressive stresses, the membrane wrinkles �if the strain field would
require a state of biaxial tension-compression� or becomes slack
and inactive �if the strain field would require biaxial compres-
sion�. Therefore, in a membrane under a general state of stress,
three regions of behavior can be identified: taut regions, where the
material is in a state of biaxial stress �both principal stresses are
positive�; wrinkled regions, where the material is wrinkled and
only one principal stress component is present in the direction of
the wrinkles; slack or biaxially wrinkled regions, where the mem-
brane is inactive.

Figures 1�a� and 1�b� show results of experimental tests on
stretched polyethylene membranes where the different regions of
behavior are identified by the letters T, W, and S. The membrane
in Fig. 1�a�, after Ref. �1�, is a thin rectangular sheet laterally
clamped and subject to a uniform vertical displacement applied
along the central portion of its base. The membrane in Fig. 1�b�,
after Ref. �2�, is a thin rectangular sheet, laterally clamped and
subject to uniaxial tensile strain. In this sheet wrinkling is gener-
ated by the action of the clamped boundaries that prevent trans-
verse contraction of the sheet and set up a local biaxial state of
stress; the transverse stresses are tensile near the boundary but
they would tend to be compressive away from it.

In human skin, local wrinkling is often observed after the clo-
sure and suture of the wound edges in procedures of reconstruc-
tive surgery. This phenomenon gives rise to an anesthetism known
as extrusion of the edges or dog-ear formation. Figure 1�c�, taken
from a surgical publication �3�, shows with simple drawings an
example of dog-ear formation and the main surgical techniques
used, during or after primary surgery, to remove it.

For states of biaxial tension and short term loading, the re-
sponse of the skin and other anisotropic biological membranes is
well described by the classical hyperelastic constitutive model of
Tong and Fung �4� and by the reduced version of this model,
known as Fung model �5�, which is also implemented in finite
element codes �FEAP �6��. The model is phenomenological and
treats the tissues as homogeneous. Recently, the isotropic form of
Fung model has been calibrated on in vivo human scalp skin
through a combined experimental/numerical procedure proposed
by the authors �7�. The in vivo experiments were on scalp flaps
tested within procedures of cosmetic surgery.

Fung model should not be used in the presence of large com-
pressive deformations: the model leads to an unrealistic extremum
in the nominal stress versus stretch curve of homogeneous
uniaxial compression and does not satisfy all growth conditions
�8,9�. However, in the presence of large compressive deforma-
tions, the membranes wrinkle and the above limitations are irrel-
evant. The problem then arises of how to treat the out of plane
nonlinearities within the framework of finite strain membrane
theory.

Different theories have been proposed in the literature to solve
the problem of the geometric instability of finite strain membranes
�Pipkin �10,11�, Wu and Canfield �12�, Steigmann �13�, among
others�. All theories follow the linear theories commonly referred
to as tension field theories that date back to the pioneering work of
Wagner on thin metal webs �14�. Wagner first introduced the con-
cept of Tension Field to describe the uniaxial stress state in a fully
wrinkled membrane. In addition, he introduced a criterion for
wrinkling based on the transverse contraction of a membrane in
uniaxial tension. He also noticed that wrinkling occurs with no
expense of energy and proved that the wrinkles are straight lines.
Additional work on the tension field theory is due to Mansfield
�15,16� who applied energy principles to define the directions of
the tension rays in wrinkled regions. The main limitations of clas-
sical tension field theories are the assumptions of small deforma-
tions and of a body that is fully wrinkled at equilibrium.

Among the nonlinear theories, reference is made in this paper
to the relaxed energy density theory of Pipkin �10,11�. The theory
treats the out of plane geometric nonlinearities as constitutive
nonlinearities through a modification of the strain energy function
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of the material in the wrinkled and slack regions. The new func-
tion is defined the Relaxed Energy Density function. Relaxed en-
ergy functions have been derived in Ref. �10� for a neo-Hookean
material, in Ref. �17� for a Varga material and in Ref. �1� for a
linear elastic material. This approach has a number of interesting
features: the problem can be solved using the in plane membrane
field variables, with no need to refer to out of plane variables; the
theory uses a variational approach and therefore it overcomes the
difficulties of other theories in the definition of the boundaries
between wrinkled, slack, and taut regions in partly wrinkled mem-
branes. In addition, the modified constitutive model can be easily
implemented in any commercial finite element codes as a user
defined material model so that the well established nonlinear al-
gorithms of solution of the code can be used. For completeness it
should be mentioned that other numerical techniques have been
used in the literature to analyze partly wrinkled membranes with
small and finite strains using finite elements and material models
other than Fung model. These techniques simulate wrinkling for
instance through a modification of the material stiffness matrix or
the material constitutive relationships �no-compression materials�
��18–23�, among others�.

A hyperelastic constitutive model is derived in this paper that
accounts for the wrinkling of finite strain plane biological mem-
branes characterized by a Fung type behavior and subject to in-
plane and geometry independent loading. Only isotropic mem-
branes, such as those examined in Ref. �7�, are considered at this
stage. The model is implemented in the finite element code FEAP

�6� and used to analyze some exemplary problems.

2 Membrane Stress and Strain Measures
The study refers to finite strain plane homogeneous membranes

subject to in-plane loading. Figure 2 shows an exemplary plane
membrane and a Cartesian reference basis with unit vectors
e� ��=1,2 ,3�. The membrane is in the plane �e1 ,e2�. In the ref-
erence configuration, S0 with boundary �S0 and unit normal m
�dotted lines�, the membrane is assumed to be undeformed. In the
current configuration, the material points occupy the surface S
with boundary �S of unit normal n. The spatial position vector, x,
defines the position of the material point in the current configura-
tion and is related to the displacement vector u by u=x-p, with p
the position vector in the reference configuration. The components
of u are u�=u ·e�.

The plane deformation of the membrane is described by the
mapping x= f�p� and by the in plane deformation gradient F, and
is measured locally by the material Green–Lagrange strain tensor
E=���e� � e�, where ��� for � ,�=1,2 are the strain components
in the Cartesian reference system and � is the tensor product. The
polar decomposition, F=RU, defines the deformation gradient in
terms of the right stretch tensor, U, and the rotation tensor, R. The
spectral decomposition of U gives the principal stretches ��, U
=��n� � n�, with n� as the unit eigenvectors. The principal com-
ponents of E are related to the principal stretches, �1 and �2,
through ��=1/2���

2 −1�.
The vector t in Fig. 2 defines edge forces acting per unit initial

length on the boundary �S of the surface The membrane forces
are described by the spatial tensor T= t��e� � e�, the second
Piola–Kirchhoff tensor �=���e� � e� �PKII� and the first Piola-
Kirchhoff tensor S=s��e� � e� �PKI�, where � ,�=1,2, and t��,
���, and s�� are the corresponding membrane force components.
The tensors are related through �=JF−1TF−T and S=JTF−T,
where J=det�F�=�1�2. In the case of isotropic elasticity, U and �
are coaxial.

Where the membrane wrinkles, an out of plane displacement
arises, u3=u3e3, and the deformation gradient becomes highly dis-
continuous �see Sect. 4�. A measure of the wrinkliness of the
deformation is given by the wrinkle-strain tensor W introduced by
Wu and Canfield �12�. The principal quantities associated with W
are W1=�1−�1

* and W2=�2−�2
*, where �1

* and �2
* are the true

principal stretches experienced by the deformed �wrinkled� sur-
face and defined by the ratio of the deformed length of the mem-
brane in the wrinkled configuration and the undeformed length ��1

Fig. 1 „a… Experimental test on a clamped rectangular polyeth-
ylene membrane, after Barsotti et al. †1‡. „b… Experimental test
on a clamped rectangular polyethylene membrane loaded in
axial tension, after Cerda et al. See Ref. †2‡. „c… Drawings after
Ref. †3‡: „1… Spindle shape excision of a skin cancer; „2… dog-
ear formation following the suture of the wound edges; „3… pro-
cedures used to eliminate the extrusion „postsuture… or to
avoid it „while suturing….

Fig. 2 Reference „dotted line… and current „solid line… configu-
rations of a plane membrane
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and �2 are membrane variables and refer to the projection of the
wrinkled membrane onto the original tangent plane�. If the
1-direction is the direction of the wrinkles, then �1=�1

* and W1
=0 �the membrane is in tension in the 1-direction� while W2=�2
−�2

*�0.

3 Fung Constitutive Model for Membranes in Biaxial
Tension

Following the classical model of Tong and Fung �4� for aniso-
tropic tissues, the elastic strain energy per unit surface area in an

isotropic membrane, Ŵ�E�, is defined as a function of the Green-
Lagrange membrane strain tensor, E, by the following form:

Ŵ�E� = A��11
2 + �22

2 + 2��11�22 + 2�1 − ����12�21��

+ c exp�B��11
2 + �22

2 + 2��11�22 + 2�1 − ����12�21���
�1a�

where A, �, c, B, and � are constants to be determined experi-
mentally. The parameter A and c have dimensions �F��L�−1 and �,
�, and B are dimensionless. The second Piola–Kirchhoff mem-
brane force tensor, PKII, is derived from Eq. �1a� and its compo-
nents are:

��� = �Ŵ/���� ��,� = 1,2� �1b�
The coefficients of the constitutive tangent matrix are calcu-

lated through partial derivation of the ��� in Eq. �1b�.
The model Eq. �1a� is able to reproduce the main characteristic

features of the mechanical response of soft isotropic biological
tissues subject to short term biaxial tension. In particular, the
model reproduces the highly nonlinear strain stiffening response
of two-phase tissues, like the skin, that at low strains is mainly
controlled by the elastin and at large strain by the collagen fibers,
after they have become uncrimpled.

A reduced version of Eq. �1a�, also known as Fung model,
omits the first term leaving only the exponential term that is suf-
ficient to accurately describe the mechanical response provided
the level of stress is not too small �5�:

Ŵ�E� = c exp�B��11
2 + �22

2 + 2��11�22 + 2�1 − ����12�21��� �2�

where the argument of the exponential is a quadratic form of the
strain components. In a compact form, the elastic potential �2� is

written as Ŵ�E�=c exp�E ·AE�, where A is a fourth order isotro-
pic tensor depending on the dimensionless constants B and �. At
incipient deformation, for F=I, the constitutive parameters in Eq.
�2� assume mechanical significance. In particular, � represents a
generalized Poisson coefficient, given by ���11/��22�
����11/��11�−1, and the products 2cB and cB�1−�� are general-
ized Young’s and shear moduli, given by ���11/��11� and
1/2���12/��12�, respectively �4�.

Constitutive inequalities, which define the range of admissible
values of the model parameters c, B, and �, must be defined to
ensure a strain-stiffening response and the convexity of the strain
energy function. To reproduce the strain stiffening behavior of the
skin, the parameter c must be positive and the argument of the
exponential function must be positive definite. These conditions,

along with the requirement of convexity of Ŵ, yield �7�

c � 0, B � 0, − 1 � � � 1 �3�

These inequalities ensure the condition of convexity of Ŵ at
incipient deformation �F=I�, which gives the strongest limitations
on the parameters, both in the plane of the Green strains and in the
plane of the principal stretches �i �for i=1,2�, for all states char-
acterized by positive principal strains.

4 Constitutive Model for Wrinkling Membranes
The model �2� cannot be used to describe the behavior of tis-

sues in compression. As already mentioned in Sec. 1 the model
yields an unrealistic extremum in the nominal stress versus stretch
curve of homogeneous uniaxial compression and does not satisfy

the growth condition Ŵ�F�→ +	 for det F→ +0+ �i.e., an infinite
amount of energy should be required to reduce the length of one
side of a rectangle of material to zero� �8,9�. However, these limi-
tations are unimportant when dealing with biological membranes,
such as the skin. Elastic membranes have very small and in gen-
eral negligible compressive and flexural rigidity and they are un-
able to sustain compressive stresses. In the presence of strains that
would require compressive stresses, the membrane wrinkles or
becomes slack.

In this formulation it is assumed that the membrane has zero
compressive and bending stiffness. In such a structure, minimum
energy states can involve a continuous distribution of infinitesimal
wrinkles �oscillations with very high frequency characterized by
magnitude and wavelength tending to zero and leading to a dis-
continuous deformation gradient� that cannot be described by or-
dinary membrane theory �15�. The problem is solved following
the approach of Pipkin �10,11� and the representation is in terms
of principal Green–Lagrange strains, �1 and �2. It is assumed that
wrinkling occurs in the directions of the principal strains, which
coincide with the directions of the principal PKII membrane
forces since the material is isotropic. For vanishing rotations R
=I, � and T are coaxial and the principal directions describe the
actual distribution of the wrinkles in the current deformed con-
figurations.

The natural contraction of the membrane is defined as the
transverse contraction of a membrane in a state of simple tension.
With a specified �1�0, the natural contraction is the value of
�2= ŵ��1� at which the minimum with respect to �2 of the elastic

potential Ŵ of Eq. �2� is attained. This leads to the condition:

2cB��2 + ��1�exp�B��1
2 + �2

2 + 2��1�2�� = 0 �4�

where the elastic potential of Eq. �2� has been defined in the plane
of the principal strains. Consequently

�2 = ŵ��1� = − ��1 �5�

From Eq. �1b�, �2=0 at the minimum of Ŵ and the only non-
zero membrane force component �1 is given by

�1 = � �Ŵ��1,�2�
��1

�
�2=ŵ��1�

= 2cB�1�1 − �2�exp�B�1
2�1 − �2��

�6�

From the natural contraction, the natural width used by Pipkin
�10,11� can be derived; it represents the deformed transverse di-
mension of a unit square of material and is given by the principal
stretch �2=�2ŵ��1�+1.

4.1 Wrinkling Criteria. Following the original formulation
of Wagner �14� and the work of Pipkin �10,11�, the natural con-
traction is used to set up criteria for wrinkling. It is assumed in the
following that �1��2.

If �1�0 and �2� ŵ��1�=−��1, then a tensile membrane force
�2�0 must exist in the membrane to make the membrane wider
in the transverse direction than it would be in simple tension. The
membrane therefore is taut and the analysis can be performed
using the elastic potential �2�.

If �1�0 and �2= ŵ��1�=−��1, then the membrane force �2
=0 as noted above, the membrane is in simple tension and again
the analysis requires no changes to the elastic potential �2�.

If �1�0 and −1/2
�2� ŵ��1�=−��1, then the membrane is
narrower in the transverse direction than it would be in simple
tension. Using the elastic potential �2� and classical membrane
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theory, a compressive membrane force �2�0 would be predicted.
Instead, the membrane stays in simple tension and the decrease in
transverse width is accomplished by wrinkling. The tension field
that arises can be included in the theory through a modification of
the elastic potential �2�. The new energy function, which is called

here relaxed energy function, Ŵr, following �10,11�, represents the
average energy function per unit area in the wrinkled region and it
will be defined in the next section.

If �1
0, then both membrane forces should be negative ac-
cording to the classical membrane theory and the elastic potential
�2�. Instead, the membrane is inactive, namely �1=�2=0, and the
decreases in widths are accomplished by biaxial wrinkling. As for
the previous case, this can be included in the model through a
modification of the elastic potential �2�.

4.2 Relaxed Energy Function. According to Pipkin �10,11�,
the relaxed energy function, Ŵr, is the quasi-convexification of Ŵ.

No general algorithms exist to define Ŵr from Ŵ. However, Ŵr
can be defined in the plane of the principal Green–Lagrange
strains considering the events that take place when the compres-
sive strain in a membrane is progressively increased while the
tensile strain is kept constant. Once the limiting condition for
wrinkling has been reached, at �2= ŵ��1�=−��1, where the energy
function �2� is at its minimum in �2, the folding process that
follows for �2� ŵ��1� occurs with no expense of energy and the

elastic potential Ŵ will retain its minimum value. Therefore Ŵr in

the wrinkling regions takes the value Ŵr��1�=Ŵ��1 , ŵ��1�� or:

Ŵr = c exp�B�1
2�1 − �2�� �7�

The principal membrane forces can be derived from Eq. �7�,
using Eq. �1b� with Ŵr instead of Ŵ, that shows that �2=0 and �1
is given by Eq. �6�. Because of the isotropy, the directions of the
principal PKII membrane forces, as well as of the Cauchy mem-
brane forces, do not change because of wrinkling.

Once the limiting condition for biaxial wrinkling has been
reached, �1
0 and �2��1, the membrane becomes inactive, it is
not stretched and its energy function stays equal to zero in all
possible deformations that follows. Therefore, in the slack re-

gions, Ŵr��1�=0.
The above considerations are summarized in Table 1 that also

generalizes the solution to cases with �2��1.

It is easily proved that Ŵr is convex in all domains defined in
�Table 1� provided the elastic constants satisfy the inequalities �3�
�convexity in the domain �1�−��2 and �2�−��1 where

Ŵr��1 ,�2�=Ŵ�E� has been proven previously in Ref. �7��. Conse-

quently, Ŵr is quasiconvex and satisfies the requirements of Pip-
kin theory �10,11�.

All basic assumptions of the tension field theory emerge as a
result of the assumed relaxed energy functions once they are used
in the solution of the hyperelastic membrane.

The criteria formulated here, which are based on the principal
strains, could also be expressed as mixed criteria in terms of prin-

cipal stresses and strains �18�. Assuming �1��2 and �1��2, the
criteria become: �T� �2�0 in a taut region, �S� �1
0 and �1


0 in a slack region, and �W� �2
0 and �1�0 in a wrinkled
region. On the other hand, the criteria cannot be posed in terms of
principal stresses only: without the condition �1
0 in �S�, the
criterion could indicate as slack a region that has �1�0 and is
therefore uniaxially wrinkled. Posing the criterion in terms of
principal stresses and strains is necessary when dealing with
orthotropic materials since the wrinkles align themselves with the
direction of the positive principal stresses that do not necessarily
coincide with the principal strain directions �20�. An extension of
the constitutive model formulated here to orthotropic Fung mate-
rials would require such an approach.

In real membranes the compressive and bending stiffnesses,
while negligible, are nonzero and the wrinkles have nonzero mag-
nitude and wavelength �2�. In addition, two types of creases can
occur, deep folds and wrinkles, depending on the type of structure
and loading conditions �21�. In the analysis above, which has been
developed within the framework of membrane theory, there has
been no need to distinguish between folds and wrinkles since the
actual distribution of creases cannot be described �22�. However,
the relaxed energy function �Table 1� derived for fine-scale wrin-
kling leads to statically determinate solutions that are appropriate
if a detailed knowledge of the deformation field is not required
and only predictions of the sizes of the different regions are
sought �17�.

5 Calibration of the Model Parameters
A numerical/experimental procedure has been formulated in

Ref. �7� for the characterization of the elastic constants of the
constitutive model �2� for in vivo human skin. The procedure has
been applied to scalp flaps �1�2 tested in vivo within procedures of
cosmetic surgery �hair replacement� �24�. The scalp flaps were
rectangular with dimensions 120�150 mm. In the analyses, the
scalp skin has been assumed to be homogeneous and isotropic.
The assumption of isotropy was made mainly to simplify the nu-
merical solution and reduce the number of constitutive parameters
to be determined from experiments and it is partially justified by
the observation that the relaxed skin tension lines are concentrical
on the top of the skull �25�. As a consequence of this assumption,
the natural stress and strain fields of the skin are isotropic and
homogeneous and are described by the principal natural stretch,
�n.

The elastic constants of the isotropic Fung model �2� and the
principal natural stretch, �n, which have been deduced from the
inverse analysis in Ref. �7�, c=1.13 kPa cm, B=0.89, �=0.6, and
�n=1.1, will be used in the examples that follow.

2A flap of skin is a domain of the skin that has been detached �undermined� from
the subcutaneous attachments.

Table 1 Wrinkling criteria

Criteria for wrinkling Relaxed energy density

Taut
regions If �1� ŵ��2�=−��2 and �2� ŵ��1�=−��1 Ŵr��1 ,�2�=Ŵ�E�=c exp�B��1

2+�2
2+2��1�2��

Wrinkled
regions

If �1�0 and −1/2
�2
 ŵ��1�=−��1

If �2�0 and −1/2
�1
 ŵ��2�=−��2

Ŵr��1�=c exp�B�1
2�1−�2��

Ŵr��2�=c exp�B�2
2�1−�2��

Slack
regions

If �1
0 and �2
0 Ŵr��1 ,�2�=0
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6 Implementation of the Constitutive Model
Into a Finite Element Code and Applications

The constitutive model derived in Section 4 for a wrinkling
membrane has been implemented in the finite element code FEAP

�6�. Since the out of plane geometric nonlinearities are treated as
constitutive nonlinearities, this has been simply done through the
definition of a new finite deformation hyperelastic model among
the material models of FEAP. The model coincides with the Fung
model, which is already implemented in FEAP, for states of biaxial
tension and accounts for uniaxial and biaxial wrinkling in strain
states of tension-compression and compression-compression
through the modified elastic potential and the criteria of �Table 1�.
The application of the model in Table 1 only requires the calcu-
lation of the principal strains, which is easily accomplished from
the special strain components. For the solution of the nonlinear
problem, a modified Newton algorithm is applied where the initial
tangent matrix is properly stiffened to match the strain stiffening

constitutive model so as to ensure stable convergence to the solu-
tion. Using this method, the calculation of the current tangent
matrix is not necessary to find the solution, so avoiding problems
of singularities associated with the presence of slack regions.

The accuracy of the finite element solution and the nonlinear
solution algorithm have been checked through comparison with
special problems that have analytical solution. Different homoge-
neous cases of membranes in tension-compression and tension
and shear, already examined in Ref. �19� using a different consti-
tutive model, have been considered. These membranes develop a
tension field over the entire domain and the uniaxial stress and the
direction of the wrinkles can be defined analytically using the
equations in Table 1. In all cases, FEAP converged to the exact
solutions within a limited number of iterations. The limiting case
of a membrane subject to pure uniaxial compression has been
used to test the stability of the iteration process. The numerical
code obtained the exact solution, given by the inverted membrane

Fig. 3 Principal membrane force fields „PKII, in kPa cm… plotted onto the deformed configura-
tion of a stretched membrane. The figure highlights regions where the membrane is in biaxial
tension „T…, where it has wrinkled „W… and where it is slack and inactive „S…. The principal
direction 1 of the Cauchy membrane force tensor indicates the direction of the wrinkles in the
W regions „shown on half of the domain….
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in pure tension, even if over several iterations the membrane were
completely inactive/slack.

In order to check the capability of the finite element model to
predict the boundaries of the different regions, taut and wrinkled,
the case of an annular membrane subject to tractions applied along
the internal and external boundaries has been considered �26,27�.
In the case of small deformations, the size of the wrinkled region
can be derived analytically and depends only on the ratios of the
internal and external tractions and the radii of the annular mem-
brane; moreover, limiting values for these ratios exist for which
the membrane is entirely wrinkled. Both the size of the wrinkled
region in small deformations and the ratios that produce full wrin-
kling have been accurately predicted by the model implemented in
FEAP. Details on the solution of this problem can be found in Ref.
�27�.

For the analysis of the annular membrane problem, as well as

the problems that will be presented in the following, different
element densities were considered to check the influence of the
mesh discretization on the accuracy of the solution and on the
numerical estimates of the boundaries of the wrinkled/taut/slack
domains. Estimates of the levels of uncertainty are given in the
following sections. It was observed that refined discretizations led
to more precise estimates of the boundaries of the domains that,
however, are very well predicted also by relatively coarse meshes
�a similar conclusion was drawn in Ref. �22��.

6.1 Stretched Membrane-I. In order to highlight the capabil-
ity of the proposed model to predict the distinct regions of behav-
ior that may appear in a stretched membrane, the response of a
thin rectangular sheet �75�25�1 mm� laterally clamped and
subject to a uniform vertical displacement �u2=6 mm� applied
along the central fifth of its base has been analyzed using the finite

Fig. 4 Principal membrane force fields „PKII, in kPa cm… plotted onto the deformed configura-
tion of a stretched membrane subject to axial tension. The figure highlights regions where the
membrane is in biaxial tension „T… and where it has wrinkled „W…. The principal direction 1 of
the Cauchy membrane force tensor indicates the direction of the wrinkles in the W regions
„shown on half of the domain….
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element model formulated in this paper. The elastic constants c
=1.13 kPa cm, B=0.89, and �=0.6 have been used in the simula-
tion. The mesh consisted of 50�20, 4-node, quadrilateral mem-
brane elements. The uncertainty on the solution for this mesh,
measured by the relative rate of convergence of the reactions at
loading points on increasing the element density, is less then 0.01.

Figures 3�a� and 3�b� show principal membrane force fields
�PKII, in kPa cm� plotted on the actual deformed configuration of
the membrane. Slack regions, S, are inactive and characterized by
zero principal membrane forces in both diagrams; wrinkled re-
gions, W, have only one nonzero principal membrane force; and
taut regions, T, are in biaxial tension. Figure 3�c� shows directions
of the maximum principal Cauchy membrane forces that in the
wrinkled regions indicate the directions of the wrinkles. Regions
of behavior similar to those of Fig. 3 have been observed in Fig.
1�a� in the thin polyethylene membrane tested by Barsotti et al.
�1� and subject to similar boundary and loading conditions. The
comparison is only qualitative since Fung model is not apt to
describe the quantitative response of polyethylene.

6.2 Stretched Membrane-II. Another interesting example of
wrinkling is the response to an applied uniaxial tensile strain of a
thin rectangular sheet �25�10�1 mm� that is laterally clamped.
The sheet has been strained up to a global displacement u1
=2.5 mm. The elastic constants c=1.13 kPa cm, B=0.89 and �
=0.6 have been used in the simulation. The mesh consisted in
50�20, 4-node, quadrilateral membrane elements. The uncer-
tainty in the solution is less than 0.001.

Figures 4�a� and 4�b� show principal membrane force fields
�PKII, in kPa cm� plotted on the actual deformed configuration of
the membrane. Wrinkled regions, W, have only one nonzero prin-
cipal membrane force; and taut regions, T, are in biaxial tension.

Figure 4�c� shows directions of the maximum principal Cauchy
membrane forces that in the wrinkled regions indicate the direc-
tions of the wrinkles �horizontal in this sheet�. In this problem,
wrinkling is generated in the sheet by the action of the clamped
boundaries that prevent transverse contraction of the sheet and set
up a local biaxial state of stress; the transverse stresses are tensile
near the boundary but they would tend to be compressive away
from it. These stresses are shown in the diagram of Fig. 5 that has
been obtained using the constitutive model Eq. �2� that allows
compressive forces to develop in the sheet. As for the previous
example, regions of behavior similar to those of Fig. 4 have been
observed in Fig. 1�b� in the thin polyethylene membrane tested in
Ref. �2� and subject to similar boundary and loading conditions.

6.3 Simulation of Reconstructive Surgery. In �7,28� a nu-
merical procedure has been formulated for the simulation of re-
constructive surgery of the skin. The procedure refers to surgical
operations characterized by the following steps: the incision of the
skin; the undermining of a portion of the skin surrounding the
cutaneous defect �cancerous and noncancerous growths, burn
wounds, lacerations, birth defects�; the excision of the defect; the
closure and suture of the wound. Similar steps characterize also
surgical procedures of cosmetic surgery, such as hair replacement
procedures.

Figure 6 describes with simple schematics the numerical proce-
dure proposed in Ref. �28� and refers to a spindle shape excision
from a skin flap. Figure 6�a� shows one fourth of the skin flap in
its natural configuration. The edges of the flap with the thick solid
lines are fixed constraints in the simulations and represent the skin
surrounding the flap that is still attached to the subcutaneous tis-
sues. The edge of the flap along the vertical axis is a line of
symmetry and the horizontal edge, which is also a line of symme-

Fig. 6 „a…–„d… Steps of a procedure of reconstructive surgery on a skin flap. „a… Natural con-
figuration of the skin; „b… incision and skin partial relaxation; „c… excision of a spindle shape
portion of the skin; „d… closure and suture. „e… Excision of a circular portion of a skin flap
„membrane forces diagrams after closure are shown in Fig. 7….

Fig. 5 Principal membrane force field „PKII, in kPa cm… obtained using the model of Eq. „2…
plotted onto the deformed configuration of a stretched membrane subject to axial tension.
The figure highlights the region where the membrane forces are compressive „up to
−1.49E–03 kPa cm….
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try, is where the incision is to be performed. In the numerical
simulation it is assumed that the phase of undermining of the skin
precedes the incision so that the skin flap in its natural configura-
tion is detached from the subcutaneous tissues. The stress and
strain fields of the skin in the fictitious natural state of Fig. 6�a�
are characterized by the isotropic natural stretch and membrane
force, �n and �n. The natural configuration is obtained in the
simulations starting from the skin flap in its reference undeformed
configuration, with the flap completely detached from the subcu-
taneous tissues, and applying uniform displacements along the

edges that are constrained in Fig. 6�a� and uniform tractions �n

along the line of the future incision. The reference and natural
configurations are homothetic because of the isotropy.

The configurations assumed by the skin flap during surgery are
obtained by imposing suitable displacements, derived by the natu-
ral stretch �n, to the external edges of the skin domains in their
reference configurations. The reference configuration of �a� is the
intact, detached, and undeformed skin flap. The reference configu-
ration of �c� and �d� is the partly excised, detached, and unde-

Fig. 7 Principal membrane force fields „PKII, in kPa cm… in a skin flap after the excision of a circular portion of
the skin „dashed line… and the closure of the wound edges. The figure compares solutions obtained using the
constitutive model „2…, diagrams „a…, which allows compressive stresses in the skin, and the constitutive model
„Table 1…, diagrams „b…, which accounts for the wrinkling of the skin. The diagrams highlight the phenomenon
of the extrusion of the edges of the wound after suture that occurs in the regions identified as slack and
wrinkled.
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formed skin flap. The line of incision-excision is subject to differ-
ent boundary conditions in the different steps of the operation: the
incision and the excision are obtained by assuming a free edge
�Fig. 6�b� and 6�c� showing relaxation of the skin flap due to the
partial release of the natural stress�; the final closed configuration
is obtained by imposing suitable vertical displacements and allow-
ing a free adaptation along x1 �Fig. 6�d��.

Preliminary applications of the numerical procedure, which
used the constitutive model �2� and the elastic constants derived in
Ref. �7�, highlighted the presence of compressive stresses along
the wound edges after the suture �28�. Figure 7�a� shows principal
membrane force fields �PKII, in kPa cm� after the excision of a
circular portion of the skin of radius 30 mm and the closure of the
wound edges in a skin flap with the same dimensions �120
�150 mm� and mechanical characteristics �c=1.13 kPa cm, B
=0.89, �=0.6, and �n=1.1� of the in vivo flaps analyzed in �7�.
Because of symmetry, only one fourth of the flap is shown in the
figure. The region where the compressive membrane forces de-
velop are highlighted in the figure. These compressive stresses are
inadmissible in a membrane with no flexural stiffness and they are
an indication of the phenomenon of the extrusion of the edges or
dog-ears formation that has been illustrated in Fig. 1�c�.

The application of the new constitutive model formulated in
this paper allows for a better simulation of the procedure of re-
constructive surgery accounting for the wrinkling of the skin. This
simulation leads to quantitative estimates of the stresses created in
the skin during and after surgery and of the boundaries of the taut,
wrinkled, and slack regions.

Figure 7�b� shows principal membrane force fields �PKII, in
kPa cm�, obtained using the constitutive model given in Table 1,
after the excision of the circular portion of the skin and the closure
of the wound edges. The regions where the skin has wrinkled or is
inactive are highlighted in the figure. The diagrams show the large
tensile membrane forces created by the closure process, which are
one order of magnitude larger than the membrane forces of the
skin in its natural state, �n=0.348 kPa cm ��n is obtained from the
natural stretch using the constitutive model �2��.

The position, shape, and size of the wrinkled and slack regions
is influenced by the shapes and sizes of the excision and the skin
flap, the natural stretch of the skin, and the closure method. In the
analysis performed here, the closure method prescribed purely
vertical displacements to all nodal points along the lines of the
incision and excision. A study is currently in progress to investi-
gate the effects of the different variables on the response of the
skin during and after suture �27�.

7 Conclusions
The problem of the wrinkling of plane isotropic membranes

characterized by a Fung type constitutive behavior in biaxial ten-
sion has been formulated and solved within the framework of
finite strain hyperelasticity, following the approach of Pipkin
�10,11� and treating the out of plane geometric nonlinearities as
constitutive nonlinearities through a modification of the elastic
potential.

The model has been implemented into a finite element code and
used to analyze the response of partly wrinkled membranes and to
simulate a simple procedure of reconstructive surgery that leads to
the formation of dog ears. The applications highlight the capabil-
ity of the model to predict the different regions of behavior that
characterize stretched membranes �taut, wrinkled, and slack�.
Used along with the numerical/experimental procedures previ-
ously formulated by the authors to identify the elastic constants of
the skin from in vivo tests and to simulate procedures of recon-
structive surgery on skin flaps, the model allows for quantitative
predictions of the mechanical response of the skin during and after
surgery. These predictions account for the effects of the natural
tension of the skin on skin wrinkling and therefore overcome the
limitations of other models proposed in the literature �29–37�.
With some supporting experimental tests, the proposed model

could become an important tool for the optimization of the size
and shape of the excision in order to reduce the extrusion of the
edges and limit the stresses generated by the suture that are known
to lessen blood flow and affect wound healing �38�.

The model proposed in this paper refers only to isotropic ma-
terials, which is a strong limitation when dealing with human skin.
The model could be extended to orthotropic materials by restating
the wrinkling criteria in terms of principal stresses and strains.
The constitutive model would then require a more complicated in
vivo identification of a larger number of elastic constants. This
could be done using the methodology suggested in Ref. �7�. The
extension to curved membranes would also require additional
studies to simulate the interactions between the skin and the sub-
cutaneous attachments.
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On the Shear Modulus of
Two-Dimensional Liquid Foams:
A Theoretical Study of the Effect
of Geometrical Disorder
The shear modulus of two-dimensional liquid foams in the dry limit of low liquid content
has been studied theoretically. The focus is on the effect of geometrical disorder on the
shear modulus (besides the influence of surface tension). Various theoretical predictions
are formulated that are all based on the assumptions of isotropic geometrical character-
istics, incompressible bubbles, and negligible edge curvature. Three of these predictions
are based on a transformation of Princen’s theory that is strictly valid only for regular
hexagonal bubbles. Another prediction takes into account variations in bubble areas by
considering the foam as consisting of approximately regular hexagonal bubbles with
varying areas. Two other predictions are solely based on the characteristics of the bubble
edges. The first of these is based on the assumption of affine movement of bubble vertices,
while the second accounts for nonaffine deformation by considering the interaction with
neighboring edges. The theoretical predictions for the shear modulus are compared with
the result from a single foam simulation. For the single simulation considered, all pre-
dictions, except that based on affine movement of bubble vertices, are close to the value
obtained from this simulation. �DOI: 10.1115/1.2424241�

Keywords: two-dimensional liquid foams, elastic behavior, shear modulus, surface
tension, geometrical disorder

1 Introduction
Liquid foams exhibit complex behaviour, ranging from elastic,

to plastic and to viscous �1–3�. Two-dimensional foams �see Fig. 1
for an example�, as considered here, constitute a convenient
framework for theories, simulations, and experiments �1�.

Here the elastic behavior of two-dimensional liquid foams is
studied theoretically in the “dry” limit, i.e., foams with small liq-
uid content. It is assumed that the edges of the bubbles are ap-
proximately straight. Hence, edge curvature is neglected. This as-
sumption is appropriate for foams that consist mostly of
hexagonal bubbles �1�.

The compressibility of the gas in the bubbles is of the order of
1 / Patm for an ideal gas at pressure Patm, which is generally much
smaller than the effect of surface tension, characterized by the
Laplace overpressure. Thus, the bubbles can be considered as in-
compressible, implying that their area remains constant in the
two-dimensional case considered here.

Since this study deals with the shear modulus, it is assumed that
the bubble and edge geometry in the initial, undeformed state is
isotropic. Topological transformations are not modeled, since we
are dealing with the elastic behavior.

The geometrical structure of three-dimensional foams has been
investigated in Refs. �5–7�, using computer simulations. The elas-
tic behavior of specific, regular three-dimensional foam models
has been studied in Ref. �8�.

The shear modulus of two-dimensional foams consisting of
regular hexagons has been studied by Ref. �9�. The objective of
the present theoretical study is to extend this analysis in order to
incorporate effects of geometrical disorder on the shear modulus.
Theoretical models that account for these effects are, to the au-

thor’s knowledge, lacking in the literature. Techniques to develop
such theories are inspired by those developed for predicting the
elastic properties of granular materials �10–13�. Types of disorder
in the foam geometry are: �i� variations in bubble areas, �ii� varia-
tions in edge lengths, and �iii� topological disorder, i.e., in the
number of edges of the bubbles.

The outline of this study is as follows. First, an overview of
micromechanics is presented in Sec. 2. Then a formulation for
predicting the shear modulus is given in Sec. 3 that accounts for
variations in bubble areas, while edge-based formulations are
given in Sec. 4. The main results from a foam simulation are
described in Sec. 5. Section 6 gives the comparison of the theo-
retical predictions with results from the foam simulation, as well
as a discussion of the findings of this study and recommendations
for further research.

2 Micromechanics
The starting point of the present analysis is the investigation by

Ref. �9� �see also Ref. �14�� of the shear modulus � of foams
consisting of regular hexagons, i.e., without any geometrical dis-
order. His result is

�Princen = �
L̄

Ā

3

2
�1�

where � is the surface tension �per unit height in the two-
dimensional case considered; so actually � is a line tension and

the line tension per film is 2��, Ā is the area of each of the

hexagons, and L̄ is the length of their edges.
For future reference this result is rewritten in two different

ways, using the relation Ā= 3
2
�3L̄2 between area and edge lengths

for regular hexagons
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�Princen,A =
�

�Ā
�4 3

4
�2�

�Princen,L =
�

L̄

1
�3

�3�

Note that these results can also be expressed in terms of an

“equivalent radius” R̄, defined through Ā=�R̄2. The equivalent
radius is widely used, especially for “wet” foams at different liq-
uid contents, but its use is not convenient in the present context.

For two-dimensional foams, each vertex corresponds to three
edges, see Fig. 1. From Euler’s equation for planar graphs, it
follows that the number of bubbles, Nbubble, and the number of
physical edges, Nedge, are related by �disregarding boundary
effects� �1�

Nedge = 3Nbubble �4�
Micromechanics deals with the relation between the macros-

cale, continuum level, and the microscale level of bubbles, see the
schematic in Fig. 2 ��15,16��. Considering elastic behavior, the
relevant mechanical quantities at the macroscale level are the
stress tensor �ij and the strain tensor �ij. For foams, the relevant
quantities at the microscale level are the forces �and their changes�
due to surface tension in the edges and the edge and bubble ge-
ometry �and their changes, i.e., the deformations�.

For foams with straight edges and constant surface tension the
constitutive relation at the microscale level �see also Fig. 2� that
relates force in the edge to the foam geometry is given by

f i
e = 2�

li
e

�lk
elk

e
�5�

where f i
e is the force in the edge due to surface tension and li

e is
the “edge vector” connecting the two vertices of edge e �see also
Fig. 1�. Note that the summation convention is employed, by
which a summation is implied over repeated subscripts �not for
superscripts�.

The associated force increment dfi
e is given by

dfi
e =

2�

�lk
elk

e�dli
e −

li
elj

e

ll
ell

edlj
e� �6�

where dli
e is the change of the edge vector, i.e., the edge deforma-

tion at the microscale level.
The stress tensor �excluding the isotropic contribution due to

the gas inside the bubble� can be expressed in terms of the forces
in the edges by averaging procedures �denoted by the arrow “force
averaging” in Fig. 2�. The resulting micromechanical expression
for the stress tensor is ��3,10,17–20��

�ij =
1

A �
e�E

fi
elj

e �7�

where A is the total area occupied by the bubbles and the summa-
tion is over the edges e in the set of edges E of the foam.

Analogous averaging procedures �denoted by the arrow “defor-
mation averaging” in Fig. 2� have been proposed for the deforma-
tion, resulting in micromechanical expressions for the �elastic�
strain tensor ��10,18,19,4,21,22�; for an overview see Ref. �23��.

The equilibrium conditions for the vertices, in combination
with the microscale level constitutive relation �5�, imply the so-
called Plateau rule: the angles between the edges incident to a
vertex must be equal to 120 deg. Since the edge curvature is ne-
glected, this means that the angle between edge vectors li

e at a
vertex must also be equal to 120 deg.

An important objective of micromechanics is to obtain consti-
tutive relations at the macroscale level, in terms of quantities at
the microscale level. To this end, additional assumptions are re-
quired. For example, by expressing the deformation at the micro-
scale in terms of the macroscale strain �see the arrow “kinematic
localisation” in Fig. 2�, the deformation is obtained. Through the
microscale constitutive relation, the microscale forces are found.
Using the micromechanical expression for the stress tensor �see
the arrow “force averaging” in Fig. 2�, the stress tensor at the
macroscale is obtained in terms of the strain tensor, thus yielding
a micromechanically based continuum constitutive relation.

In micromechanical studies, kinematic localization assumptions
are mostly used. In principle, it is also possible to obtain micro-
mechanically based continuum constitutive relations by formulat-
ing the forces at the microscale level in terms of the macroscale
stress �see the arrow “static localization” in Fig. 2�. For granular
materials, both procedures, kinematic and static localization, have
been used successfully, see, for example, Ref. �11�.

However, for foams the procedure based on static localisation
fails, since relations �5� and �6� between �increment of� force and
�deformation of� geometry are not bijective: given the force, the
length of the edge is indeterminate. The procedures developed in
the sequel will therefore be based on kinematic localization
assumptions.

Since the shear modulus is investigated here, the imposed strain
increment tensor d�ij is isochoric

d�ij = d��1 0

0 − 1
� �8�

where d� is a magnitude of the applied strain increment.
Combining Eqs. �5� and �7�, we obtain the stress tensor �ij in

terms of the edge vectors li
e

�ij =
2�

A �
e�E

li
elj

e

�lk
elk

e
�9�

From Eq. �9� it follows that in isochoric deformation, i.e., with
constant A, the stress increment d�ij is given by

Fig. 1 Example of a two-dimensional foam: bubbles, edges,
vertices, and edge vector; adapted from Ref. 4

Fig. 2 Schematic of micromechanics: constitutive relations at
macroscale and microscale levels, averaging and localization;
adapted from Ref. 15
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d�ij =
2�

A �
e�E

1

�ll
ell

e�Iiklj
e + li

eIjk −
li
elj

elk
e

lm
e lm

e �dlk
e �10�

where Iij is the identity tensor.
By definition, the shear modulus � satisfies �using Eq. �8��

d�11 − d�22 = 2��d�11 − d�22� = 4�d� �11�
Although the elastic properties can also be obtained from

changes with strain of the total perimeter of the foam edges �24�,
and hence, from the change in energy �relative to that in the base
state; the energy in the base state has been studied in Ref. �25��, it
is noted in Ref. �8� that it is generally easier and more accurate to
determine the elastic properties directly from the changes of stress
with strain, since the relative changes in energy are very small.

3 Area-Based Formulation
In this section a formulation is developed for taking into ac-

count the effect on the shear modulus of disorder in bubble areas.
The formulation consists of three steps: �i� a description of the
simplified geometry, �ii� an analysis of the stress response of a
single bubble �with a bubble size that differs from the average
bubble size� to deformation that is imposed on its neighboring
bubbles, and �iii� averaging of this stress response over all bubble
sizes in order to obtain the effective shear modulus of the foam.

3.1 Simplified Geometry. To enable analytical manipula-
tions, strong simplifications of the foam geometry are required.
Here, all bubbles are considered to be regular hexagons �as
sketched in Fig. 3� with varying area A0 and for each bubble its
edges are straight and have equal length, although the length may
vary from bubble to bubble. This length l0 is directly related to the
area A0 of the bubble

l0 =�2A0

3�3
�12�

Thus, the type of disorder considered is fairly restricted: edge-
length and topological disorder are not taken into account. Al-
though a bubble with a specific orientation is shown in Fig. 3, it is
assumed that the bubble orientations are randomly distributed in
the isotropic state considered.

The behavior of a single bubble, with area A0, will be consid-
ered that is immersed in a “matrix” �in the terminology of the
study of heterogeneous elastic materials �26,27�� of approximately

hexagonal bubbles whose area is equal to the average area, Ā. The

corresponding edge length is denoted by L̄, i.e., L̄=�2Ā / �3�3�.

This geometrical model is sketched in Fig. 3. It is an idealisation
that does not necessarily correspond to a compatible �construc-
table� foam.

Considering the symmetries present, the configuration is de-
scribed by the coordinates of points P= �x ,y�T, Q= �0,y+h�T, R
= �X ,Y�T, and S= �0,Z�T. These points are denoted by the gray
triangles �P ,Q� and squares �R ,S� in Fig. 3. The area of the hex-
agonal bubble is given by A=4xy+2xh.

In the initial, undeformed configuration we have x0
= l0 cos 30 deg, y0= l0 /2, h0= l0 sin 30 deg while points R and S
are then R= �x0 ,y0�T+�0�cos 30 deg,sin 30 deg�T and S= �0,y0
+h0+�0�T, where �0 is the value of � in the undeformed
configuration.

The central assumption made in the current analysis is that
points of the neighboring bubbles, in this case the points R and S,
move affinely with the imposed strain given by Eq. �8�. Thus, to
first order in �, X=X0�1+d��, Y =Y0�1−d��, and Z=Z0�1−d��,
where X0, Y0, and Z0 are the coordinates X, Y, and Z in the unde-
formed configuration.

The choice of the affinely moving points determines the value
of �0. In general, the vertices will not move affinely, but in the
elastic range the movement of the bubble centers is generally
closer to affine than that of bubble vertices �28�. Thus, the mid-
points of the edges of neighboring bubbles �denoted by the gray
squares in Fig. 3� are assumed to move affinely. This implies the
following choice for �0

�0 =
L̄

2
�13�

3.2 Analysis of Single Bubble Response. The response of
the single bubble under consideration to the deformation imposed
on the neighboring bubbles is analyzed. As explained in the pre-
vious section, this imposed deformation is defined through the
affine movement of the midpoints of edges of neighboring
bubbles. The vertices P and Q of the bubble under consideration
will generally not move affinely. Their movement is determined
from the requirement of static equilibrium of the vertices P and Q,
i.e., the edges must satisfy the Plateau rule that the angle between
the edges equals 120 deg. The Plateau rules for vertices P and Q
require that

tan 30 deg =
h

x
tan 30 deg =

Y − y

X − x
�14�

An additional restriction on the movement of these vertices is
that the bubble is incompressible, and hence its area is constant,
A=A0, or

4xy + 2xh = A0 �15�
The resulting equations for the positions of the vertices can be

solved analytically. In linearized terms, the displacements du, dv,
and dw are determined from

x = x0 + du, y = y0 + dv, h = h0 + dw �16�

After some algebra we obtain

du =
�3

2
l0d�, dv = l0d�, dw =

1

2
l0d� �17�

From these displacements of the vertices, the increments of the
edge vectors dli

e can be determined.

3.3 Averaging. In this section the effective shear modulus
will be determined from the response of the single bubbles to
imposed deformation, as analyzed in the previous section.

First, the expression �10� for the stress increment is rewritten
into an equivalent form that is based on bubble stresses

Fig. 3 Geometry of a regular hexagonal bubble
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Ad�ij = �
b

Abd�ij
b , d�ij

b =
�

Ab
�

e�E�b�

1

�ll
ell

e�Iiklj
e + li

eIjk −
li
elj

elk
e

lm
e lm

e �dlk
e

�18�

where the summation is over all bubbles b in the foam, Ab is the
area of bubble b, d�ij

b is the increment of the stress tensor of
bubble b, and E�b� is the set of all edges of bubble b. Note that
each physical edge is counted twice in this formulation; hence the
factor 2 from Eq. �10� is absent here.

In terms of the probability density function r�A0� for the bubble
areas, Eq. �18� can be expressed as

NbubbleĀd�ij = Nbubble	
0

�

r�A0�A0d�̄ij�A0�dA0 �19�

where Ā is the average bubble area and d�̄ij�A0� is the average
stress increment of bubbles with area corresponding to A0.

Using the results of the analysis of Sec. 3.2 for the edge defor-
mations dli

e, d�̄ij�A0� can be determined from Eq. �18�. It follows
after some lengthy algebra that

d�̄11�A0� − d�̄22�A0� = 4�
�l0�A0� + �0�

A0
d� �20�

Using the choice �13� for the affine points and the relation �12�
between edge length and bubble area for regular hexagons, the
resulting effective shear modulus � becomes, see Eq. �11�, after
some algebra

� =
�

�Ā
� 2

3�3�1

2
+	

0

�

r�A0��A0

Ā
dA0� �21�

For narrow probability density functions r�A0�, the result �21�
can be approximated by

� 

�

�Ā
�4 3

4�1 −
1

12

�2�A0�

Ā2 � �22�

where �2�A0� is the variance of the bubble areas. In the case of a
foam without area variations, we retrieve the result �2�.

4 Edge-Based Formulations
Two edge-based formulations will be given. Both are based on

first analyzing the response of a single edge to imposed deforma-
tion. The response of the set of edges that constitutes the foam is
then obtained by averaging the responses of the individual edges
in the foam. Since these formulations are based on edges, they
account for disorder in edge lengths. No restrictions are posed on
the absence of topological disorder, i.e., the number of edges of
the bubbles may vary from bubble to bubble.

The first formulation is based on affine deformation of all ver-
tices. This leads to an overprediction of the shear modulus, since
this deformation does not lead to force equilibrium of the vertices,
i.e., the edges do not satisfy the Plateau rules.

In the second, more refined formulation it is assumed that, for
an edge under consideration, the midpoints of the neighboring
edges move affinely �as was also assumed in Sec. 3�. The move-
ment of the vertices of the edge under consideration are deter-
mined from equilibrium conditions, i.e., the Plateau rules. Thus,
this formulation takes into account neighboring-edge corrections.

Consider a straight edge in the undeformed configuration with
length l0 and orientation �0 �without loss of generality, −90 deg
	�0	90 deg�, as shown in Fig. 4. Hence, the edge vector is
given by li= l0�cos �0 , sin �0�T. Assume that the edge length and
edge orientation can be considered as independent random vari-
ables. Thus, the probability density function q�l0 ,�0� for edge
length and edge orientation is given by q�l0 ,�0�= p�l0�E��0�,
where p�l0� is the probability density function for edge lengths

and E��0� is the edge orientation distribution function �the contact
distribution function for granular materials �29��. For the isotropic
states considered

E��0� = 1/� �23�

In terms of the probability density functions p�l0� and E���, the
increment of the stress tensor becomes, using Eqs. �4� and �10�

d�ij =
6�

Ā
	

0

�

p�l0�dl0	
−�/2

�/2

E��0�
1

l0
�Iiklj + liIjk

−
liljlk

l0
2 �dlk�l0,�0�d�0 �24�

where dli�l0 ,�0� is the average increment of the edge vectors of
edges with length l0 and orientation �0 in the undeformed configu-
ration. Note that li= li�l0 ,�0�.

A kinematic localization assumption �see Fig. 2� for dli�l0 ,�0�
is therefore required to obtain the stress increment, and hence, the
shear modulus, from Eq. �24�. The kinematic localization assump-
tion will be addressed in two ways in the following two
subsections.

The edge deformation dli�l0 ,�0� can be decomposed into com-
ponents in the direction of the edge, dlT�l0 ,�0�, and the direction
perpendicular to the edge, dlN�l0 ,�0�

dli�l0,�0� = dlT�l0,�0�Ti��0� + dlN�l0,�0�Ni��0� �25�

where Ti��0�= �cos �0 , sin �0�T and N��0�= �−sin �0 ,cos �0�T.

4.1 Affine Deformation. The first kinematic localization as-
sumption is based on the assumption that the vertices move af-
finely. The corresponding kinematic localization assumption for
the edge deformation is

dli�l0,�0� = d�ijlj�l0,�0� �26�

The equivalent components dlT�l0 ,�0� and dlN�l0 ,�0�, see Eq.
�25�, are

dlT�l0,�0� = d�l0 cos 2�0 dlN�l0,�0� = − d�l0 sin 2�0 �27�
After some algebra it follows from Eqs. �8�, �24�, and �26� that

d�11 − d�22 =
9�

Ā
d�	

0

�

p�l0�l0dl0 �28�

The corresponding shear modulus, see Eq. �11�, is given by

� = �
L̄

Ā

9

4
�29�

This shear modulus is �=�Princen
3
2 , where �Princen is the shear

modulus for regular hexagonal bubbles, see Eq. �1�. Hence, the
affine kinematic localisation assumption leads to an overestima-
tion of the shear modulus for regular hexagons.

4.2 Neighboring-Edge Corrections. The second kinematic
localization assumption takes into account neighboring-edge cor-
rections. It is similar to the methods developed in Refs. �12,13� for
granular materials.

Consider an edge with orientation �0 and length l0, see Fig. 5.
Its vertices �black triangles in Fig. 5� are denoted by V1 and V2.

Fig. 4 Length and orientation of a straight edge
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Also shown are the other edges incident on vertices V1 and V2. On
these other edges, points A1 to A4 are indicated in Fig. 5 by gray
squares.

In the initial, undeformed configuration the coordinates of V1
= �l0 /2 cos �0 , l0 /2 sin �0�T, while those of V2 and V3 are V2,3
=V1+�0�cos��0±60 deg� , sin��0±60 deg��T, respectively, as fol-
lows from the Plateau rules. The coordinates of the other points
V2, A3, and A4 follow from the symmetry present.

To investigate the deformation of such an edge, it is assumed
that the points A1–A4 move affinely according to Eq. �8�. The
positions of these points is fixed with �0 according to Eq. �13�,
i.e., it is assumed again that the midpoints of edges move approxi-
mately affinely.

The displacement of vertex V1 is defined as �u ,v�T. From sym-
metry it follows that the displacement of vertex V2 equals �−u ,
−v�T. These displacements are determined by Plateau’s rule for
vertex V1 �equilibrium conditions�. This gives, after some lengthy
algebra, complicated expressions for u�l0 ,�0 ;d� ,�0� and
v�l0 ,�0 ;d� ,�0�. The corresponding increment dli�l0 ,�0 ;d� ,�0�
of the edge vector is dli�l0 ,�0 ;d� ,�0�=2�u�l0 ,�0 ;d� ,�0� ,
v�l0 ,�0 ;d� ,�0��T. This constitutes the kinematic localization as-
sumption of the present formulation. The results for dlT�l0 ,�0� and
dlN�l0 ,�0�, as defined in Eq. �25�, are, after substituting Eq. �13�

dlT�l0,�0� = cos 2�0�d�l0��1 +
L̄

l0
�

dlN�l0,�0� = − sin 2�0�d�l0�
 1 −
L̄

l0

1 + 2
L̄

l0

� �30�

where L̄ is the average edge length.
With the kinematic localisation assumption thus formulated, the

stress increment can be calculated from Eq. �24�. After some
lengthy algebra the effective shear modulus � becomes, see also
Eq. �11�

� =
3

4

�

Ā
	

0

�

p�l0�� 2L̄2 + L̄l0 + 3l0
2

2L̄ + l0

�dl0 �31�

For narrow probability density functions p�l0�, this result can be
approximated by

� 
 �
L̄

Ā

3

2�1 +
2

9

�2�l0�

L̄2 � �32�

where �2�l0� is the variance of the edge lengths. For zero vari-
ance, this result is identical to that of Princen �9� for regular
hexagons, see Eq. �1�.

5 Results From a Foam Simulation
The results of a foam simulation �30�, using the Surface

Evolver �31�, are analyzed here. The Surface Evolver is a com-
puter program that can minimize the energy of a surface subject to
constraints. The simulated two-dimensional foam consists of 100
bubbles with equal area. Of these bubbles, 14% has five edges,
72% has six edges �hexagons�, and 14% has seven edges. Periodic
boundaries are used in the simulation to minimize boundary
effects.

The edge orientation distribution function E��0� determined
from the simulation is shown in Fig. 6, together with that for an
isotropic foam geometry. Considering the small number of edges
present in the foam, the foam can be considered as isotropic.

For the average length of the edges we have L̄=0.6271�Ā;

compare with L̄=0.6204�Ā for regular hexagons. The probability
density function of edge lengths p�l0� is shown in Fig. 7. The

variance in edge length equals �2�l0�=0.35L̄2.
The macroscale strain was determined from the deformation of

the periodic box �that corresponds to the periodic boundaries�,
while the stress increment was determined from Eq. �10�. Thus the
shear modulus could be determined from the foam simulation, see
Table 1.

To further study kinematic localization assumptions �see Fig.
2�, edge deformation dlT�l0 ,�0� and dlN�l0 ,�0�, as defined in Eq.
�25�, obtained from the foam simulation are investigated. Since

the number of edges is fairly small, dlT�l0 ,�0� and dlN�l0 ,�0� can-
not be reliably estimated. Instead the edge deformation dlT��0�
and dlN��0�, i.e., dlT�l0 ,�0� and dlN�l0 ,�0� averaged over all edge
lengths l0, have been determined, see Fig. 8. These quantities
represent the dependence of edge deformation on edge
orientation.

Figure 8 shows that dlN��0� is much smaller than dlT��0�, which
means that deformation by changes of edge length is dominant
over deformation by changes in edge orientation. The formulation
based on affine edge deformation, see Sec. 4.1, predicts that
dlT��0� and dlN��0� are of the same order of magnitude, see Eq.
�27�. Also shown in Fig. 8 is a fit �denoted by the solid line� of the

data points dlN
e with the form 
 cos 2�0�d�L̄�. This form for

dlT��0� is predicted by both edge formulations, see Eqs. �27� and
�30�. The fitted value for 
=1.96, while the value predicted by Eq.
�30� is 
=2, i.e., there is good agreement between simulation and
prediction. For small variations in l0, it also follows from Eq. �30�
that dlN��0�
0.

6 Discussion
The effect of geometrical disorder on the shear modulus of

two-dimensional liquid foams has been studied theoretically. Vari-
ous theoretical predictions have been formulated that are founded
on the assumptions of isotropic geometrical characteristics, in-
compressible bubbles and negligible edge curvature.

Three of these predictions, �1�–�3�, are based on Princen’s
theory that is strictly valid only for regular hexagons. Prediction
�1� is obtained by replacing the area and edge length in Princen’s
result by corresponding average values. Prediction �2� is obtained
by using the relation between area and edge length for regular
hexagons to express Princen’s result in terms of average bubble
area. Similarly, prediction �3� is obtained by expressing Princen’s

Fig. 5 Geometry of the neighborhood of an edge
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result in terms of average edge length. Note that these transfor-
mations are not based on a theoretical framework.

Prediction �21� is obtained by taking into account variations of
bubble areas. It has been assumed that the bubbles can be approxi-
mated by regular hexagons with varying areas. Predictions �29� is
based on affine deformation of all vertices. Prediction �32� in-
cludes corrections to affine deformation by taking into account
neighboring edges.

The numerical values for the nondimensional shear moduli
�scaled such that it equals 1 for prediction �1�� from the single
foam simulation reported in Sec. 5 and according to the developed
theories are given in Table 1, together with a short description of
the underlying theory and a characterization of the type of disor-
der that has been modeled. Except for the prediction based on the

assumption of affine deformation, Eq. �29�, all predictions are
within 4% of the value from this single simulation. Since the
bubble areas are all equal in the simulation, predictions �2� and
�21� are identical. Thus, it is not possible to verify the �range of�
validity of prediction �21� from the present foam simulation.

It is somewhat surprising that predictions �1�–�3� and �21�,
which are all based on assumption that the foam consists exclu-
sively of hexagonal bubbles �no topological disorder, i.e., no
variation in the number of edges of the bubbles�, are so close to
the value from the simulation, since 28% of the bubbles in the
simulation were not hexagonal. Note that no assumption regarding
topological disorder �or its absence� has been made in the deriva-
tion of predictions �29� and �32�.

Given the characteristics of the analyzed single foam simulation

Fig. 6 Edge orientation distribution function E„�0… from simulation; dotted
line: E„�0… for isotropic foam geometry

Fig. 7 Probability density function p„l0… of edge lengths from the foam
simulation
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�equal bubble areas, limited edge-length disorder, limited topo-
logical disorder�, it is not possible to conclude decisively which
theoretical prediction is most suitable for accounting for the effect
of geometrical disorder on the shear modulus of two-dimensional
foams. To determine the range of validity of the developed theo-
ries, more experimental data and/or foam simulations are required.

For further research it is recommended to: �1� perform experi-
ments to check the validity of the theories developed here and to
guide further theoretical developments; �2� perform detailed foam
simulations with more pronounced geometrical disorder in: �i�
edge lengths, �ii� bubble areas, and �iii� topology, i.e., in the num-
ber of edges per bubble; �3� perform foam simulations with larger
numbers of bubbles, so detailed statistics of the edge deformations
can be obtained to investigate kinematic localization assumptions
�see Fig. 2�, such as Eqs. �27� and �30�; �4� investigate the use of
“self-consistent approximations” �26,27� to derive expressions for
the effective shear modulus; �5� extend the developed methods to
foams with curved edges �instead of only considering straight
edges, as done here�; �6� investigate the use of variational prin-

ciples, as employed in Ref. �11� for the prediction of rigorous
upper and lower bounds to the elastic moduli of granular
materials.
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Analytical Solution for
Size-Dependent Elastic Field
of a Nanoscale Circular
Inhomogeneity
Two-dimensional elastic field of a nanoscale circular hole/inhomogeneity in an infinite
matrix under arbitrary remote loading and a uniform eigenstrain in the inhomogeneity is
investigated. The Gurtin–Murdoch surface/interface elasticity model is applied to take
into account the surface/interface stress effects. A closed-form analytical solution is ob-
tained by using the complex potential function method of Muskhelishvili. Selected nu-
merical results are presented to investigate the size dependency of the elastic field and the
effects of surface elastic moduli and residual surface stress. Stress state is found to
depend on the radius of the inhomogeneity/hole, surface elastic constants, surface re-
sidual stress, and magnitude of far-field loading. �DOI: 10.1115/1.2424242�

1 Introduction
Nanotechnology involves analysis, design, and fabrication of

devices and structures with at least one of the overall dimensions
in the nanometer range. Common examples are nanowires, nano-
tubes, nanoplates, etc. In addition, composite materials with
nanoscale inclusions/tubes as reinforcing elements represent new
developments in advanced materials technology. Such materials
can be tailored to have unique mechanical, electronic, and optical
properties �1,2�. Study of material properties at the nanoscale and
elastic field of nanostructures and nanocomposites is important to
further development of nanotechnology.

Atomic force microscopy is used to determine the Young’s
modulus, strength, and toughness of nanorods and nanotubes �3�
and elastic modulus of nanowires �4�. Unlike for bulk material
elements, the measured effective elastic properties are highly de-
pendent on the size of the nanostructure. This size dependency of
properties at nanoscale can be understood by incorporating the
effect of surface and interfacial energies. In the classical case,
bulk elastic energy controls the behavior of a material element,
whereas for nanoscale elements the influence of surface effects
becomes dominant due to the high surface/volume ratio. Atoms
near the surface/interface have different equilibrium positions and
energy from that of the bulk. Therefore, surface energy effects can
be substantial for nanostructures.

Size dependency of effective properties and elastic field of
nanoscale elements can be explained by accounting for the effect
of surface stresses that are associated with the excess free energy
of a surface. The roots of surface stress theory lies in the thermo-
dynamics of solid surfaces as formulated by Gibbs �5�. In the
traditional continuum mechanics approach the effects of surface
free energy is neglected as the bulk elastic energy dominates the
response. Gurtin and Murdoch �6� and Gurtin et al. �7� developed
a general theoretical framework for a continuum with surface
stresses. Cammarata �8� and Miller and Shenoy �9� have applied
the surface stress model to examine several issues involving
nanoscale elements. Sharma et al. �10� and Sharma and Ganti �11�
studied the size-dependent elastic state and Eshelby’s tensor of
nanoinhomogeneities, respectively, by applying the Gurtin–

Murdoch model. Duan et al. �12� recently examined size depen-
dency of the effective bulk and shear moduli of a solid containing
nanoinhomogeneities.

In this paper, the Gurtin–Murdoch model is applied to study the
two-dimensional size-dependent elastic field of a nanoscale circu-
lar inhomogeneity in an infinite elastic plane under remote biaxial
loading. This is a fundamental problem in nanomechanics and the
solution is currently not available. Muskhelishvili �13� provided
an analytical solution for the classical circular inclusion problem
in the absence of surface stress effects by using complex potential
functions. Muskhelishvili’s approach is extended in the present
paper to a nanoscale inhomogeneity in which the surface stresses
give rise to a nonclassical boundary condition. The closed-form
analytic solution derived in this paper corresponds to a uniform
applied biaxial traction field and a uniform eigenstrain. It should
be noted that Sharma and Ganti �11� presented the solution for
radially symmetric elastic field of a circular cylindrical inclusion
and spherically symmetric elastic field of a spherical inclusion
subjected to uniform eigenstrain. The present solution reduces to
the Sharma and Ganti solution �11� for the radially symmetric
loading case. The derivation of the closed-form analytic solution
is presented in the next section and is followed by numerical
results for selected cases.

2 Elastic Field of Circular Inhomogeneity
Consider an infinite plane, containing a single circular inhomo-

geneity of nanoscale, subjected to uniform far-field tractions and a
prescribed uniform eigenstrain in the inhomogeneity �Fig. 1�. The
materials of the matrix and inhomogeneity are assumed to be lin-
early elastic, homogeneous, and isotropic with Lamé constants
�M, �M and �I, �I, respectively. Note that the subscripts M and I
are used to identify quantities associated with the matrix and in-
homogeneity, respectively. The inhomogeneity, with its center at
the origin of the coordinate system, has radius R0.

For plane problems, the displacement and stress components in
Cartesian and polar coordinates, �x1, x2, x3� and �r, �, x3� respec-
tively, can be expressed in terms of two analytic functions ��z�
and ��z� as �13�

2��ur + iu�� = e−i�����z� − z���z� − ��z�� �1�

�rr + ��� = 2����z� + ���z�� �2�

�rr − i�r� = ���z� + ���z� − ei2��z̄���z� + ���z�� �3�
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2��u1 + iu2� = ���z� − z���z� − ��z� �4�

�11 + �22 = 2����z� + ���z�� �5�

�22 − �11 + 2i�12 = 2�z̄���z� + ���z�� �6�

where ui and �ij are displacement and stress components, respec-
tively; z=x1+ix2=rei�; �=3−4� for plane strain and �3−�� / �1
+�� for plane stress, and � and � are the shear modulus and
Poisson’s ratio, respectively.

Assume that the inhomogeneity is perfectly bonded to the ma-
trix. Then the displacements are continuous at the interface

�ur + iu��M = �ur + iu��I + �ur + iu��I
*, at r = R0 �7�

where the last term is the displacement induced by the prescribed
uniform dilatational eigenstrain 	*, i.e., 	11

* =	22
* =	*, and �ur

+iu��I
*�r=R0

=R0	*.
The following field equations and constitutive relations can be

established for an isotropic material based on the theory proposed
by Gurtin and Murdoch �6� and Gurtin et al. �7�:

in the bulk �matrix and inhomogeneity�

�ij,j
B = 0, �ij

B = �
ij	kk + 2�	ij �8�
on the interface of inhomogeneity

����
B n�� + ���,�

S = 0 �9�

�� ji
Bninj� = ���

S k�� �10�

���
S = 
0
�� + 2��S − 
0�	�� + ��S + 
0�	��
�� �11�

where superscripts B and S are used to denote the quantities cor-
responding to bulk �matrix and inhomogeneity� and surface/
interface of inhomogeneity; �ij and 	ij denote stress and strain,
respectively; � and � are Lamé constants; 
ij is the Kronecker
delta; ni is the normal vector on the surface/interface; �S and �S

are the surface Lamé constants; 
0 is the residual surface stress
under unstrained conditions; k�� is the curvature tensor of the
surface or interface; and �*�= �*�M − �*�I denotes the jump across
the matrix–inhomogeneity interface.

The first equation in Eq. �8� is the equilibrium equation of the
bulk materials, whereas Eqs. �9� and �10� are the equilibrium
equations of the surface/interface. Equation �11� is the surface
constitutive equation. It should be noted that the surface stress
tensor is a two-dimensional �2D� quantity and the strain normal to
the surface is excluded in Eq. �11�. Thus, the Greek indices take
the value of 1 or 2, while Latin subscripts adopt values from 1 to
3.

In the �r, �, x3� coordinate �x3 is the direction perpendicular to
the �r, �� plane�, Eqs. �9� and �10� can be written as follows:

on the surface/interface
in � direction

��r�
B � +

����
S

R0��
+

��3�
S

�x3
= 0 �12�

in x3 direction

��r3
B � +

��33
S

�x3
+

���3
S

R0��
= 0 �13�

in r direction

��rr
B � =

���
S

R0
�14�

For plane problems, �r3
B =�3�

S =��3
S =0 and the derivatives with

respect to x3 are zero. Thus Eq. �13� is automatically satisfied.
Equations �12� and �14� can be expressed in the following com-
plex variable form

��rr
B − i�r�

B � =
���

S

R0
+ i

����
S

R0��
�15�

The left-hand side of Eq. �15� can be written in terms of potential
functions by using Eq. �3�. For the right-hand side, the surface
stress is

���
S = 
0 + 2��S − 
0�	�� + ��S + 
0��	33 + 	��� �16�

The elastic strain 	�� at the surface can be obtained from the
following equations

	�� + 	rr = � 1

�
����z� + ���z���

r=R0

�17�

	�� − 	rr + i	r� = � 1

�
�z̄���z� + ���z��ei2��

r=R0

�18�

Here, �=�+� for plane strain and �=��3�+2�� / ��+2�� for
plane stress. Therefore

	�� = � 1

2�
����z� + ���z�� +

1

4�
�z̄���z� + ���z��e2i� +

1

4�
�z���z�

+ ���z��e−2i��
r=R0

�19�

Note that the strain 	�� is continuous at the interface because of
the continuous displacement at the interface. In the following deri-
vation, the strain 	�� is calculated from the matrix. Note that 	33
=0 for plane strain and 	33=��	rr+	��� / ��−1��r=R0

for plane
stress. Because of the discontinuity of 	33 at the interface, the
mean strain is used, i.e.

	33 = 1
2 ��	33�M + �	33�I�r=R0

�20�

�	33�M can be obtained by using Eq. �17�. Due to the eigenstrain
effect, �	33�I is

�	33�I =
�I

�I − 1
��	rr + 	���I

e + 2	*� �21�

where �	rr+	���I
e is the elastic strain in the inhomogeneity which

can be obtained from Eq. �17�.
Introduce a complex variable � such that

z = m��� = R0�, � = r0ei� �22�

Note that at the interface r0=1, and ����=��m���� and ����
=��m����. The complex potentials �M���, �I���, �M��� and �I���
corresponding to the matrix and inhomogeneity are now expanded
into the following Laurent series form

�M��� = A� + 	
n=1

�

An�−n, �M��� = B� + 	
n=1

�

Bn�−n �23�

Fig. 1 Nanoscale inhomogeneity in an infinite matrix
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�I��� = 	
n=1

�

Fn�n, �I��� = 	
n=1

�

Gn�n �24�

Note that the constant terms have been omitted in Eqs. �23� and
�24� since they represent the rigid body displacements and have
no effect on the stress distribution. In Eq. �23�, A and B are real
and complex numbers, respectively, characterizing the remote
stress field. In view of Eqs. �5� and �6�

�11
� + �22

� =
4A

R0
, �22

� − �11
� + 2i�12

� =
2B

R0
�25�

where �11
� , �22

� , and �12
� are the far-field stresses which in the case

of our study are assumed to be

�22
� = �0, �11

� = a�0, �12
� = 0 �26�

Here, a is a real number characterizing the loading ratio �11
� /�22

� .
In the present case, both A and B are real numbers. Note that a
=1 and a=0 refer to biaxial and uniaxial loadings, respectively,
while a=−1 represents pure shear loading.

The following set of equations are obtained by substituting Eqs.
�1�, �23�, and �24� into Eq. �7� and equating the coefficients of ein�

0 = − 2F̄2,
�I

�M
��MA1 − B� = − 3F̄3 − Ḡ1

�I

�M
�MAn+1 = − �n + 3�F̄n+3 − Ḡn+1, �n = 1,2,3 . . . � �27�

�I

�M
��MA − A − B̄1� = �IF1 − F̄1 + 2�IR0	*, −

�I

�M
B̄2 = �IF2

�I

�M
�nĀn − B̄n+2� = �IFn+2, �n = 1,2,3 . . . � �28�

Substitution of Eqs. �3�, �16�, �23�, and �24� into Eq. �15� yields

2A + B1 − �F1 + F̄1� = 
0 + 4�5�IR0	* − �1B1 − �1B̄1

+ 2��1 + �3��2A + �4�5�F1 + F̄1�

2B2 − 2F̄2 = �1B2 + 4�4�5F̄2

− Ā1 − B + 3F3 + G1 = − �1B − 2�1Ā1 + 3�1B̄3 + ��1 + �3��2Ā1

− 3�4�5F3

− A1 + B3 − F̄3 = �1B̄ + 2�1A1 − 3�1B3 − ��1 + �3��2A1

+ 3�4�5F̄3

− Ān+1 + �n + 3�Fn+3 + Gn+1 = − �1�n + 1��n + 2�Ān+1

+ �2��1 + �3��n + 1�Ān+1

+ �1�n + 3�B̄n+3

− �n + 3��4�5Fn+3, �n = 1,2,3 . . . �

− �n + 1�An+1 + Bn+3 − F̄n+3 = �1�n + 1��n + 2�An+1

− �2��1 + �3��n + 1�An+1

− �1�n + 3�Bn+3

+ �n + 3��4�5F̄n+3, �n = 1,2,3 . . . �
�29�

where

�1 =
KS

4�MR0
, �2 =

2�M

�M
, KS = 2�S + �S − 
0, �4 =

2�I

�I

�3=0 for plane strain and

�S + 
0

4�MR0

�M

�M − 1

for plane stress
�5=0 for plane strain and

�S + 
0

4�IR0

�I

�I − 1
�30�

for plane stress
The solution of Eqs. �27�–�29� yields

A1 =
�− c1 + c2 − c3 + 3�4�5c6�B
d1 + �Mc2 + d2 + 3�4�5d3

, An+1 = 0, �n = 1,2,3 . . . �

�31�

B1 =
�7
0 + 2�2�5�7 − c7��IR0	* + 2��7c4 + �6�8c7�A

�6c7 + �7c1
, B2 = 0

B3 =
�c4 + c5 − c3 + 3�4�5c6�B
d1 + �Mc2 + d2 + 3�4�5d3

, Bn+3 = 0, �n = 1,2,3 . . . �

�32�

F1 =
− �6
0 + 2�6�c1�8 − c4�A − 2�2�5�6 + c1��IR0	*

2��6c7 + �7c1�
, F2 = 0

F3 =
�6

�I

�− c1 + c2 − c4 − c5�B
d1 + �Mc2 + d2 + 3�4�5d3

, Fn+3 = 0, �n = 1,2,3 . . . �

�33�

G1 = − �6
�M�− c1 + c2 − c3 + 3�4�5c6�B
d1 + �Mc2 + d2 + 3�4�5d3

− B�
−

3�6

�I

�− c1 + c2 − c4 − c5�B
d1 + �Mc2 + d2 + 3�4�5d3

Gn+1 = 0, �n = 1,2,3 . . . � �34�

where

�6 = �I/�M, �7 = ��I − 1�/2, �8 = ��M − 1�/2

c1 = 1 + 2�1, c2 = �6�1 + 3�1�

c3 = �6�1 − �1 − �6�/�I, c4 = �2��1 + �3� − 1

c5 = �6�1 − �2��1 + �3� + 2�1 + �M�1�

c6 = �6��6 − 1�/�I, c7 = 1 + �4�5

d1 = 1 + 4�1 + �2��1 + �3�

d2 = �6�1 + �1 + �2��1 + �3� + �M�6�/�I

d3 = �6�1 + �M�6�/�I . �35�
The complete elastic field is explicitly given by Eqs. �1�–�6�

together with Eqs. �23�, �24�, and �30�–�35�. After some manipu-
lation, the stresses along the interface are:

in the matrix

��� =
2A − B1

R0
+

�B − 3B3�cos 2�

R0
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�rr =
2A + B1

R0
+

�− 4A1 − B + 3B3�cos 2�

R0

�r� =
�− 2A1 + B + 3B3�sin 2�

R0
�36�

in the inhomogeneity

��� =
2F1

R0
+

�12F3 + G1�cos 2�

R0
, �rr =

2F1

R0
−

G1cos 2�

R0

�r� =
�6F3 + G1�sin 2�

R0
�37�

Note that due to the surface/interface stress effects,
�1��3 ,�5��0 and 
0�0, and the stress state depends on the size
of the inhomogeneity R0 as the coefficients A1, B1, B3, F1, F3, and
G1 in Eqs. �31�–�34� are nonlinear functions of R0. When no
surface/interface stresses exist, i.e., �1=�3=�5=0 and 
0=0, the
above results reduce to the classical solution in which the elastic
state is size independent. The shear and radial stresses are equal
on either side of the interface in the classical case and

�r� =
�6�1 + �M��1 − a��0 sin 2�

2�1 + �M�6�

�rr =
�6�1 + �8��1 + a��0 − 4�I	

*

2��6 + �7�
−

�6�1 + �M��1 − a��0cos 2�

2�1 + �M�7�
�38�

Hoop stresses on the interface are different and given by
in the matrix

��� =
��6 + 2�7 − �6�8��1 + a��0 + 4�I	

*

2��6 + �7�

+
�4 − 3�6 + �M�6��1 − a��0 cos 2�

2�1 + �M�6�
�39�

in the inhomogeneity

��� =
��6 + �6�8��1 + a��0 − 4�I	

*

2��6 + �7�

+
�6�1 + �M��1 − a��0 cos 2�

2�1 + �M�6�
�40�

As can be seen from Eqs. �38�–�40�, the stress state is independent
of R0 in the classical solution.

3 Numerical Results and Discussion
Selected numerical results are presented in this section and the

surface elastic constants are obtained from past studies. The plane
strain case in which the surface effect is represented by the pa-
rameters KS �or �1� and 
0 is investigated in the numerical study
without loss of any generality. Experiments have been performed
to determine the surface stress which has an order of 1 N/m �14�.
The embedded atom method was used by Miller and Shenoy �9�
and Shenoy �15� to determine the surface elastic constants. Their
results indicated that the surface elastic constants depend on the
material type and the surface crystal orientation. For example, for
Al �1 0 0� surface: �S=3.4939 N/m, �S=−5.4251 N/m, 
0

=0.5689 N/m, KS=−7.9253 N/m; while for Al �1 1 1� surface:
�S=6.8511 N/m, �S=−0.3760 N/m, 
0=0.9108 N/m, and KS

=5.1882 N/m �9�. Although the surface properties are generally
anisotropic, it is assumed that the isotropic case is sufficient to
illustrate the main features of the size-dependent response. In the
calculations, unless specified otherwise, 
0= ±1 N/m and KS

= ±10 N/m.

3.1 Infinite Plane With a Circular Hole. An infinite plane of
aluminum containing a circular hole under far-field loading is con-
sidered. The bulk elastic constants for aluminum are: �M
=58.17 GPa, �M =26.13 GPa �16�. Based on the analysis pre-
sented in the previous section, hoop stress �plane strain� at �=0 on
the hole surface is given by

��� = �3 − a��0 − � 1

2
��1�2 + 2�1��1 + a�

1 + 2�1

+
3��1�2 + 2�1��1 − a�

1 + 4�1 + �1�2

�0 −


0/R0

1 + 2�1
�41�

Note that the first term is the classical elasticity result and the
last two terms represent the surface stress effects and contain non-
linear terms of R0. The first two terms are linear with respect to
the loading magnitude while the third term is independent of ex-
ternal loading and linear with respect to the residual surface stress

0. When a=1, i.e., under radially symmetric loading, the result is
the same as that obtained by Sharma and Ganti �11�. Following
the classical definition, a stress concentration factor can be defined
for a hole by normalizing hoop stress at �=0 by the remote load-
ing magnitude when 
0=0.

The effect of the surface elastic constant, KS=2�S+�S−
0, on
the stress state is first studied for the case 
0=0. In this case based
on Eq. �41�, the hoop stress concentration factor ���� /�0� is inde-
pendent of the loading value �0. Figure 2 shows the stress con-
centration factor for various values of far-field loading ratio a for
a hole with radius R0=5 nm. The stress concentration factor var-
ies linearly with a and is slightly increased or decreased compared
to the classical result �
0=0, KS=0� depending on whether KS is
negative or positive. The influence of KS appears to be more
prominent when a is negative. Figure 3 shows the stress concen-
tration factor for various values of the radius of the hole. The
classical solution in which 
0=0 and KS=0 is, as expected, inde-
pendent of the radius, while the surface stress effects cause the
stress concentration factor to be highly size dependent, especially
when the radius is less than 10 nm. The stress concentration factor
increases or decreases rapidly when the cavity radius is less than
10 nm depending on whether KS is negative or positive. The sur-
face stress effect is negligible when the hole radius is over 15 nm
and the stress concentration factor is equal to the classical elastic-
ity solution. Similar behavior is observed for other values of a as
well.

Figure 4 shows the variation of normalized hoop stress
�����R0 ,�� /�0� in the circumferential direction along the surface

Fig. 2 Variation of stress concentration factor with loading ra-
tio, a, for a hole without residual surface stress „R0=5 nm…

Journal of Applied Mechanics MAY 2007, Vol. 74 / 571

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



of a hole with 5 nm radius under uniaxial loading �a=0� when

0=0. At �=0, the normalized stress is reduced for positive KS

and increased for negative KS when compared to the classical
result; however, opposite behavior can be seen at �=� /2. Similar
behavior is observed for pure shear loading �a=−1�. Under biaxial
loading �a=1�, the elastic field is radially symmetric and the hoop
stress does not vary along the hole. As can be seen from Fig. 2 for
a=1, normalized hoop stress increases and decreases for negative
and positive KS values, respectively. Figure 5 shows the variation
of normalized hoop stress and radial stress along the positive x1
direction. The surface stress effect is evident near the hole surface
but diminishes quite rapidly as x1 increases, especially in the case
of hoop stress. Figure 5 shows that when compared to the classical
solution, the normalized radial stress is larger near the hole sur-
face and slightly smaller far from the hole for positive values of
KS. The opposite behavior is noted for negative values of KS.

Consider next the influence of residual surface stress, 
0, on the
stress field of a plane containing a hole. When KS=0 �or �1=0�,
the hoop stress at the hole surface is

��� = ��1 + a� + 2�1 − a�cos 2���0 − 
0/R0 �42�
Note that Eq. �42� applies to both plane stress and plane strain

cases. As mentioned previously, the second term on the right-hand
side of Eq. �42� is independent of the magnitude of remote loading
and corresponds to stress due to the residual surface stress. As �0
would appear in the denominator of the second term on the right-

hand side of Eq. �42�, a stress concentration factor of the classical
form is not defined when 
0�0. It is clear from Eq. �42� that
circumferential dependence of hoop stress along the hole surface
is given by the classical elasticity solution minus a constant term
that is linearly proportional to 
0 and inversely proportional to
hole radius. Similar to the effect of KS, a negative 
0 increases
hoop stress while a positive 
0 decreases it.

Let ���
C and �rr

C denote hoop and radial stresses corresponding
to the classical elasticity solution respectively. Let ���

S and �rr
S

denote hoop and radial stresses due to the residual surface stress.
Figure 6 shows the variation of ���

C and �rr
C normalized by �0 and

���
S and �rr

S normalized by 
0 /R0 along the positive x1 direction
under uniaxial loading. Again, the residual surface stress shows a
significant influence on the stress field in the vicinity of the hole
surface. Its effect is negligible at a distance greater than four times
the hole radius. Note that ���

S and �rr
S along x1 are proportional to

−

0

R0
� x1

R0
�−2

and


0

R0
� x1

R0
�−2

respectively. Hence, the normalized stress components due to 
0

shown in Fig. 6 are independent of the radius R0.
Yang �17� found that the effective shear modulus is size depen-

dent only considering the strain-independent surface stress. Re-
cently, Duan et al. �12� mentioned that such a constant surface
stress should not have an influence on the effective shear modulus.
This is confirmed by the present study. Equations �36� and �37�
show that the shear stress in the matrix and the inhomogeneity are
independent of the residual surface stress 
0, and thus the effective
in-plane shear modulus is also independent of 
0. However, 
0 has
an effect on the effective in-plane Young’s modulus.

3.2 Infinite Plane With Circular Inhomogeneity. In recent
years, quantum dot and wire structures have attracted considerable
attention due to their potential application in nanotechnology �18�.

Fig. 3 Variation of stress concentration factor with radius of
hole and KS for a hole without residual surface stress „a=0…

Fig. 4 Circumferential variation of normalized hoop stress
along hole surface „R0=5 nm, a=0…

Fig. 5 Variation of normalized hoop and radial stresses along
the x1 direction for different KS

„R0=5 nm, a=0…
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It is also well known that mechanical and optoelectronic proper-
ties of nanocomposites are significantly influenced by the elastic
field of the inhomogeneity. It is therefore important to understand
the elastic field of a nanoscale inhomogeneity in a matrix material.
To show the surface/interface effect on the elastic field, a matrix-
inhomogeneity system made out of InAs/GaAs is considered. The
bulk Lamé constants used are: �I=50.66 GPa, �I=19.0 GPa for
InAs, and �M =64.43 GPa, �M =32.9 GPa for GaAs �19�.

Consider first the case of a GaAs plane subjected to far-field
loading with no eigenstrain in the InAs inhomogeneity. Hoop
stress at the point �=0 on the interface is investigated when 
0

=0. Figure 7 shows the normalized hoop stress of the inhomoge-
neity and the matrix for various values of a. The results are simi-
lar to that of a circular hole �Fig. 2� and the effect of KS is slightly
more prominent in the inhomogeneity than in the matrix. When
a=−1 and KS=10 N/m, the differences between the present and
the classical results are 7% for the inhomogeneity and 4.5% for

the matrix. Figure 8 shows the normalized hoop stress for differ-
ent values of the inhomogeneity radius. Similar to the case of a
circular hole, the surface stress effect is significant when the ra-
dius of the inhomogeneity is less than 10 nm.

The influence of eigenstrain 	* in the inhomogeneity is now
considered in the absence of far-field loading. In this case, the
stress field is radially symmetric and there is no shear stress. It is
noted that the Eshelby tensor is uniform in this case but also size
dependent due to surface stress effect. Figure 9 shows the normal-
ized hoop stress ��� /�I	

* at the inhomogeneity–matrix interface
for 
0=0. The normalized hoop stress is tensile in the matrix,
while it is compressive in the inhomogeneity. In the classical case,
hoop stress in the inhomogeneity and matrix have the same abso-
lute value but opposite signs. Size-dependent behavior of hoop
stress is clearly evident for an inhomogeneity with a radius
smaller than 15 nm.

4 Summary and Conclusion
The elastic state of a nanoscale circular hole/inhomogeneity in

an infinite matrix subjected to arbitrary remote loading and a uni-
form eigenstrain is investigated. The Gurtin–Murdoch surface/
interface elasticity model is applied to take into account the
surface/interface stress effects at the nanoscale. It is shown that
the complex potential function method of Muskhelishvili can be
successfully extended to the present class of problems to obtain a

Fig. 6 Variation of normalized hoop and radial stress compo-
nents along the x1 direction for a hole with residual surface
stress „�0Å0, a=0…

Fig. 7 Variation of normalized interfacial hoop stress at �=0
with loading ratio a for an inhomogeneity with R0=5 nm „solid
line for matrix and dash line for inhomogeneity…

Fig. 8 Variation of normalized interfacial hoop stress at �=0
with inhomogeneity radius and KS

„a=0; solid line for matrix
and dash line for inhomogeneity…

Fig. 9 Variation of normalized interfacial hoop stress due to
an eigenstrain �* with inhomogeneity radius „solid line and left
Y axis for matrix, and dash line and right Y axis for
inhomogeneity…
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closed-form analytical solution. The new solution presented in this
paper reduces to the classical elasticity solution in the absence of
surface stress effects. The stress state of a circular hole shows
strong dependency on hole radius, surface elastic constants, and
residual stress when the hole radius is less than 10 nm. Hoop
stress around a hole can be increased or decreased due to surface
elasticity effects. Similarly, the elastic field of an inhomogeneity is
also affected by its radius, surface elastic constants, and residual
stress when the radius of the inhomogeneity is less than 10 nm.
The solution derived in this paper provides some fundamental
understanding of the elastic field of materials containing nanos-
cale holes/inhomogeneities. The present results can also be used
in the validation of numerical methods such as finite element tech-
niques for nanomechanics problems.
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Modeling of Threaded Joints
Using Anisotropic Elastic
Continua
Using fine material meshes in structural dynamics analysis is often impractical due to
time step considerations. Unfortunately, fine meshes are typically required to capture the
inherent physics in jointed connections. This is especially true in threaded connections
which feature numerous contact interfaces and stress singularities. A systematic method
is presented here for representing the threaded volume by a continuous, homogeneous,
linear elastic, anisotropic equivalent material. The parameters of that equivalent mate-
rial depend on thread geometry and the assumed contact condition between adjacent
threads and are derived from detailed finite element simulations of a characteristic
thread-pair unit cell. Numerical simulations using the equivalent material closely match
the local stiffness through the load path calculated from the finely meshed thread models
and also reproduce classical theoretical and experimental results from the literature.
�DOI: 10.1115/1.2424467�

Keywords: threaded connections, joints, anisotropic elasticity, equivalent material, finite
element model

1 Introduction
Studies of threaded connections have become ubiquitous in re-

cent technical literature due to the advancing capabilities of finite
element tools. In most cases, these analyses are validated through
comparison to the broadly accepted theoretical work of Sopwith
�1� and the experimental work of Goodier and Hetenyi �2,3�.

Finite element models have become accepted tools for the de-
sign of screw threads and the development of design codes for
mechanical and structural applications �4�. Implicit in the appro-
priateness of such analyses is sufficient discretization of the model
mesh to capture the physics of contact between adjacent threads
and to capture adequately the singular behavior at the thread root.

Threaded joints are not only a major component of the me-
chanical integrity of the structure, but they are also a major path
for mechanical energy flow through the system. From the perspec-
tive of structural dynamics, the energy flow through a threaded
joint is generally a more important consideration than mechanical
energy dissipation since it is believed that there is very little en-
ergy dissipation in tightened threaded connections. �See Ref. �5�
for an example.� Very finely meshed quasistatic finite element
analysis of joints can lend insight into joint mechanics, but fine
meshes are impractical for direct use in structural dynamics mod-
eling, typically requiring impractically small time steps �6�.

Rather than using finely meshed individual threads, a recourse
is to replace the threaded region with an equivalent medium which
captures the manner in which statically indeterminate equilibrium
is achieved in the joint and quantitatively represents the manner of
mechanical energy transmission through the joint. Bretl and Cook
�7� employed an axisymmetric technique to replace the thread
zone with a layer of elements with orthotropic properties. Their
numerical results agreed well with theoretical and experimental
results but required an a priori assumption of zero normal stress in
an assumed direction.

In this paper, a simple, low-order modeling approach that cap-
tures the general behavior that would be manifest by a very finely
meshed finite element model of the threaded region is explored.

The approach is similar to that of Bretl and Cook in that a narrow
region including opposing thread pairs is replaced by a homoge-
neous, continuous material with fictitious material properties.
However, rather than assuming a principal direction and normal
stress condition to employ an orthotropic model, anisotropic elas-
tic properties are deduced by performing a set of finite element
simulations involving homogeneous boundary conditions on a
finely meshed characteristic thread-pair unit. This systematic
method of arriving at effective material properties leads to easy
implementation within a finite element code. The resulting linear
model provides an otherwise missing link in the linear structural
dynamic analysis of systems connected by threaded assemblies.

The next section explains the motivation and theoretical devel-
opment of this approach. The remainder of the paper illustrates the
technique through a set of two-dimensional numerical bolt pull
simulations.

2 Theoretical Construction of Equivalent Homoge-
neous Material

When performing failure analysis, highly discretized geom-
etries may be inescapable, although engineering judgment may be
used to concentrate investigation on local regions of expected
high stresses and strains. Structural dynamics analysis, on the
other hand, endeavors to capture the manner in which the local
geometries and physics yield a global response. Complex inter-
faces, notably threaded connections, require significant numbers
of elements to capture the physics of the mechanical interaction.
The core problem of integrating micromechanical analysis of
thread interactions with structural dynamics lies in the fundamen-
tally different spatial �and temporal� scales associated with each.
This difficulty manifests itself in two ways.

1. The myriad tiny elements needed to capture the geometry
and detailed mechanics of each thread-pair define a time scale via
the Courant–Friedrichs–Levy condition that is orders of magni-
tude smaller than those characteristic of the dynamics of the struc-
ture as a whole �8�. Regardless of the number of processors avail-
able to the analyst, time integration associated with each joint
element domain will involve time steps orders of magnitude
greater in number than dynamic analysis of similar structures
without joints. If this difficulty is addressed through implicit inte-
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gration, the problem manifests itself through prohibitively bad
matrix conditioning. In this sense the problem has more to do with
the size of the elements than with the number of elements.

2. Attempting to capture the full unilateral contact mechanics of
each joint pair during the structural dynamics analysis requires
solving the coupled nonlinear contact problem across each oppos-
ing element surface pair. Such problems are particularly difficult,
since they converge slowly and in a manner exacerbated by the
number of potential contact pairs involved.

In the method presented here, the above difficulties are elimi-
nated by replacing the whole threaded region by a continuous
equivalent material. Finite element modeling of this equivalent
material could involve elements roughly on the scale of the thread
pairs rather than on the scale necessary to micromodel such pairs,
thus obviating the first issue raised above. If some of the nonlin-
earity intrinsic to thread mechanics �such as frictional energy dis-
sipation� are to be captured, an appropriate equivalent nonlinear
material would be devised. In that context, the nonlinearity would
be embodied in the nonlinear properties of a small number of
finite elements representing the threaded region. For example, an
anisotropic elastic-plastic constitutive model might be employed
for this purpose. In this manner the second of the above difficul-
ties is circumvented. If, however, the primary interest is the elastic
behavior of the threaded zone as it affects structural dynamics, an
equivalent anisotropic elastic medium is sufficient. This is the
approach presented here.

The theoretical construction of equivalent material properties
begins with the definition of the thread-pair unit cell. Figure 1
shows a cell of the representative thread pair, the associated fine
finite element mesh of the cell, and an equivalent material mesh of
the same cell. The micromeshed thread pair is placed in a large
mesh containing an array of similar thread pairs �Fig. 2�. The
boundaries of this large periodic mesh are then subjected to a
number, N, of different displacements consistent with homoge-
neous deformations. Here, St. Venant’s principle is assumed to
assert that the resulting deformation field in the middle thread pair
is similar to that which would result if the thread pair were part of
an infinite array of such thread pairs. �Note that St. Venant’s prin-
ciple is applied to the far field, elastic portion of the problem, not
to the inelastic near field.� From the static solutions of each of the
N displacements, equivalent homogeneous stresses and strains are
deduced. The mathematics of these calculations are discussed in
the Appendix Secs. 2 and 3, respectively. Finally, the constitutive
parameters of an equivalent anisotropic elastic material most con-
sistent with the above ensemble of stress and strain pairs are de-
duced. The manner in which this optimization is achieved can be
found in the Appendix Sec. 4.

3 Applications in Two Dimensions

3.1 Constitutive Formulations. The general approach intro-
duced in this manuscript is illustrated in this section for a problem
of two dimensional plane elasticity �plane stress or plane strain�.
In the most general case of elastic anisotropy, there are 21 mate-
rial parameters to identify, but in the case of two-dimensional
plane elasticity, there are only three significant stress components
and three significant strain components, so the number of neces-
sary parameters reduces to six

��xx

�yy

�xy
� = �C1 C3 C5

C3 C2 C6

C5 C6 C4
���xx

�yy

�xy
� �1�

Though it may be that the equivalent material response is nearly
orthotropic, further reducing the number of parameters, the use of
general anisotropy permits us to avoid having to identify the prin-
cipal directions.

The quasistatic finite element code JAS3D �9� was used in the
calculations discussed here, with its 3D orthotropic material
model extended to accommodate full anisotropy. The choice of
plane stress or plane strain elasticity is implemented through the
choice of boundary conditions applied to surfaces normal to the
x ,y plane.

Axisymmetry is accommodated at the cost of just a little more
complexity. The thread pitch is assumed small relative to the dis-
tance of the thread zone from the axis of symmetry and the cir-
cumferential direction is assumed to be a principal material direc-
tion. The equilibrium equations involve the three stresses
discussed above and the stress ��� in the circumferential direction.
Given the above assumptions, the elastic constitutive model is of
the following form:

�
�xx

�yy

�xy

���

� = �
C1 C3 C5

C3 C2 C6

C5 C6 C4

C7

��
�xx

�yy

�xy

��� = ux/r
� �2�

For simplicity of presentation, the rest of this paper focuses on
problems of plane elasticity, but the methods employed apply
similarly to problems of axisymmetry.

3.2 Plane Elasticity Threaded Bolt Experiments. The abil-
ity of the equivalent material to replace threaded models was ex-
plored for the two canonical threaded bolt configurations in Fig. 3.
The geometry on the left, case 1, approximates the case of a bolt
in an infinite substrate. The geometry on the right, case 2, is simi-
lar to the “classical” bolt/nut geometry that is frequently reported

Fig. 1 Unit cell for a representative thread pair

Fig. 2 The finely meshed thread test model for determining
material properties in plane strain. The center thread pair is the
cell on which the material parameters are calculated.

576 / Vol. 74, MAY 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



in the literature. The threads are of the buttress variety with the
assumed material properties of an aluminum alloy �E=69 GPa
and �=0.33� and the boundary conditions are those of plane strain
��zz=0�.

This geometry has a large number of threads, making an ap-
proximation of periodicity plausible and the thread dimension is
small compared to the distance from the axis of symmetry, sup-
porting the plane strain geometric assumptions. In applying this
method, a unit thread pair �or unit cell� is defined such that the
identified thread region can be seen as an assemblage of stacked
unit thread pairs. A unit thread pair is highlighted in its test matrix
in Fig. 2. The associated finite element analysis of the unit thread
pair requires sufficient geometric resolution to contain all of the
pertinent features necessary to capture the important interactions
among the teeth.

The thread pair is loaded by applying displacements upon the
boundary surfaces of the matrix. Figure 4 shows the four loading
cases considered for developing the material constants: two exten-
sional cases and two shear cases. For each case, the finite element
code is employed to find the stress and displacement fields over
the whole structure from which the equivalent �mean� homoge-
neous stress and strain fields are deduced in the region of the

representative thread pair. Equivalent elastic constants are then
calculated in the manner discussed in the previous section, assum-
ing perfect adherence �welded conditions� on each screw thread
interface.

With the equivalent elastic properties now defined, a displace-
ment controlled experiment, where the top surface of the bolt head
depicted in Fig. 3 was displaced upward 3.175 �m, was per-
formed for three unique thread representations for both sets of
boundary conditions. Two of the thread representations employed
identical meshes �Fig. 5� and the actual screw thread geometry,
but differed in the application of the contact condition across ad-
jacent threads. The two contact conditions were: frictionless
across contacting interfaces and welded across contacting inter-
faces. These two cases serve as bounds to the stiffness response of
the bolt/block system. The number of elements employed in the
mesh for these cases was 6309 hexagonal elements of which 1219
were located in the thread region. Most of the 5090 elements
outside the thread area are required to accommodate the transition
from the very fine mesh used in the threads.

The third thread representation was that of an equivalent, con-
tinuous, homogeneous, anisotropic elastic material. Several differ-
ent meshing schemes, with increasing degrees of coarseness �de-
creasing degrees of fineness�, were employed for comparison to
the screw thread geometry results. Figure 6 shows a mesh of
intermediate coarseness which has 1754 hexagonal elements with
230 of these elements located in the thread zone.

An important feature of this equivalent anisotropic material
mesh is shown in the insets of Fig. 6. The equivalent material
approximation is only good where the thread loads are nominally
periodic. This assumption breaks down at the extreme boundaries
of the threaded region and the voids between the threads must be
accommodated explicitly. This is achieved by introducing “cuts”
in the mesh at physical locations of noncontact that precede the
first thread interface and that follow the last thread interface.
�These cuts are indicated in the insets via solid black lines.� Dis-
continuous displacements are admitted across the cuts, approxi-
mating the free surfaces around the voids.

For the boundary conditions of case 1, a comparison of the
predictions associated with each of the three described thread rep-
resentations is shown in the next five figures. The mesh of Fig. 6

Fig. 3 Simple plane strain bolt pull test designed to exercise the equivalent ma-
terial model. Case 1 approximates that of a bolt in a large block. Case 2 is consis-
tent with the boundary conditions of a tightened bolt/nut system. The model is cut
along its plane of symmetry.

Fig. 4 The four load cases employed to develop the equivalent
material parameters
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was used for the equivalent material model. Figure 7 shows the
resultant vertical reaction force for each thread representation as
the top of the bolt head is subjected to an imposed vertical dis-
placement. For the small displacements imposed, the response in

each instance appears linear with effective stiffness values of
�106 N/m� 12.17, 12.96, and 12.90 for frictionless screw threads,
welded screw threads, and the welded equivalent material model,
respectively. The equivalent material model underpredicts the ef-
fective stiffness of the welded screw threads by less than half of
1%. The welded equivalent material and the frictionless interface
were not expected to agree as well, and indeed these two sets of
predictions differ on the order of 6%. The difference in effective
stiffness values for the screw thread meshes with different contact
conditions appears to be broadly consistent with those numerical
results reported by Chabaan and Jutras �4�.

These results raise the intriguing possibility of devising an ap-
propriate nonlinear constitutive model to capture the behavior of
the frictionless simulations. Development of such a nonlinear
model could be the topic of future study.

Figure 8 shows a plot of the shear stress along the midline of
the mated screw threads and through the middle of the equivalent
material. The origin is positioned at the bottom of the thread stack.
Of course for the meshed screw thread cases, the shear stress trace
necessarily passes through an interface, whereas the equivalent
material is continuous. The oscillatory period of the shear stress
along the screw threads corresponds to the geometric period of
thread pairs. The shear stress in the equivalent material appears to
match the trends of the shear stress at the top and bottom of the
thread stack. The shear stress also matches well in the mean sense
along the interior thread region. Figure 9 illustrates this matching
more directly as the shear stress is integrated along the length of
the thread stack. Again, the origin is located at the bottom of the
thread stack. The equivalent material model matches well with the
welded screw thread case. The oscillations in the screw thread
models reflect the periodic nature of the geometric discontinuities
along the thread stack.

The next two figures show results along the midline of the bolt
shaft, the plane of symmetry in the model. Figure 10 shows the
vertical displacements as a function of axial coordinate. Figure 11

Fig. 5 The finely meshed thread model employs 6309 hex ele-
ments, with 1219 of those elements located in the thread region

Fig. 6 The coarsely meshed equivalent material model used
for comparison in the following plots employs 1754 hex ele-
ments, with 230 of those elements located in the thread region.
The thick solid lines in the insets are planes of discontinuity
within the equivalent material.
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shows the normal stress along the bolt shaft as a function of axial
coordinate. In both figures, the origin is located at the bottom of
the bolt and the vertical dashed line at 31.5 mm indicates the
position of the top of the threads. In both figures there is good
matching between the welded screw thread case and the equiva-
lent material model.

Figure 12 shows a comparison of the calculated force-
displacement results between the welded thread model and three

realizations of the welded equivalent material with different levels
of mesh coarseness. The legend on the right hand side of the
figure shows the unit cell associated with each line style used in
the figure. From top to bottom, the unit cells are: the welded
thread model, fine equivalent mesh �4330 total elements, 803 in
the thread region�, intermediate equivalent mesh, and the coarse
equivalent mesh �436 total elements, 63 in the thread region�. It is
apparent that the force-displacement curves for all four cases are

Fig. 7 Force versus displacement plot for three material cases: finely meshed
welded threads, finely meshed frictionless threads, and coarsely meshed welded
equivalent material. The displacement is measured at the nodes at which the dis-
placement is imposed.

Fig. 8 Shear stress along the midline of the thread region for three material
cases: finely meshed welded threads, finely meshed frictionless threads, and
coarsely meshed welded equivalent material
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quantitatively similar. The effective stiffness �106 N/m� for the
four meshes are, respectively, 12.96, 12.87, 12.90, and 13.00. As
expected, the reported stiffness increase for the more coarsely
meshed cases is due to discretization error. However, the stiffness
difference is less than 0.5% between the threaded model and the
coarsest equivalent model despite a reduction of the number of

elements in the threaded region by a factor of nearly 20.
For the boundary conditions of case 2, the shear stress distribu-

tion through the center of the thread stack is shown in Fig. 13.
This shear stress distribution, as compared to that of case 1, �Fig.
8� suggests substantially different load distributions along the

Fig. 9 Integrated shear stress along the midline of the thread region for three
material cases: finely meshed welded threads, finely meshed frictionless threads,
and coarsely meshed welded equivalent material

Fig. 10 Vertical displacement along the symmetry plane of the bolt model for
three material cases: finely meshed welded threads, finely meshed frictionless
threads, and coarsely meshed welded equivalent material. The vertical dashed line
corresponds to the location of the bottom of the bolt cap.
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threads. It is often reported as a “rule-of-thumb” that the first
several threads of a screw carry the majority of the load. This is
indeed true for the boundary conditions illustrated for case 2.

It was Sopwith’s �1� examination of threaded joints subject to
boundary conditions similar to those of case 2 which lead to the
often repeated rule-of-thumb. Ironically, conditions for which the
rule is in error are implicitly stated and theoretically supported in
that same paper. Indeed, general applicability of the rule-of-thumb
is clearly contradicted in Fig. 14. This figure plots the fraction of

the total load carried by the threads for the boundary conditions of
Fig. 3, where the first thread is that closest to the bolt head. The
figure compares the results for the welded thread model and the
welded equivalent model for both boundary condition cases. For
case 1, the load is distributed essentially linearly along the length
of the bolt, while for case 2, the majority of the load is carried by
the first several threads. The load distribution agrees, quantita-
tively, very well with similar results reported by Chaaban and
Jutras �4�. Figure 14 also includes an overlay of Sopwith’s theo-

Fig. 11 Normal stress along the symmetry plane of the bolt model for three ma-
terial cases: finely meshed welded threads, finely meshed frictionless threads,
and coarsely meshed welded equivalent material. The vertical dashed line corre-
sponds to the location of the bottom of the bolt cap.

Fig. 12 Force versus displacement plot for four different mesh cases: welded thread model, fine equivalent material, inter-
mediate equivalent material, and coarse equivalent material. The legend associates each case with a corresponding line in the
force-displacement plot.
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retical result. There is good agreement between Sopwith’s result
and case 2 provided that the appropriate triangular thread param-
eters are used within Sopwith’s derivation.

4 Conclusions
A technique has been introduced in this paper for deriving

equivalent material models to represent threaded connections. The

illustrations have centered on planar elastic response of simple
geometries, but the technique can be applied in direct manners to
more complex materials and geometries.

It should be noted that it is not necessary to assume that the
equivalent material is elastic. In particular, by accommodating the
elastic/hardening-plastic nature of the metals that make up the
thread cell, appropriate numerical experiments employing incre-

Fig. 13 Shear stress along the midline of the thread region for two material
cases: finely meshed welded threads and coarsely meshed welded equivalent
material

Fig. 14 Fraction of the load carried by the threads along the thread stack for the
two boundary condition cases illustrated in Fig. 3. The welded thread model and
welded equivalent model are shown for both cases. Sopwith’s derivation overlays
the results for boundary condition case 2.
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mental deformations can be performed to deduce the parameters
of an equivalent elastic/hardening-plastic material. This inelastic
model suggests a systematic method for predicting ductile failure
loads of threaded joints. Specifically, the kinematics deduced from
the coarse equivalent model could be mapped onto the nonlinear
finely meshed thread-pair unit cell. A quasistatic simulation em-
ploying those kinematic boundary conditions could then be com-
pared against a set of local failure criteria.

Three-dimensional analyses similar to the two-dimensional
ones performed here would be necessary to accommodate large
thread depth to radius problems. Such work is planned for a future
study. Because these are relatively small problems, the associated
three-dimensional finite element analyses and postprocessing of
the results would not be prohibitive. The resulting axisymmetric
material would have one more material parameter than was the
case in the two-dimensional problems discussed above.

Additionally, if experimental data indicate that significant en-
ergy dissipation can take place in a threaded joint—finite element
calculations on this issue were inconclusive—dissipative models
may be employed. Iwan models could be considered since they
have worked well in other contexts �see Refs. �10,11��. The suit-
ability of this approach is still an open question.

Finally, it is important to emphasize that the analysis presented
here provides linear approximations for threaded connections.
Though it has value in linear structural dynamics, it cannot be
employed in problems of load reversals sufficient to overcome
preload nor will it be helpful in problems of torsion �finite rota-
tion�.
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Appendix

1 Deducing Equivalent Strains, Stresses, and Param-
eters

The sections in this Appendix provide tools to deduce param-
eters of an elastic material equivalent to those of a welded unit
thread pair. The key notion is to perform a number of elasticity
calculations on a mesh containing an array of unit thread pairs
�Fig. 2� and then to identify the single set of equivalent elastic
parameters that best reproduces all those elasticity results. This
effort has three elements.

1. For each detailed elasticity result, deduce an equivalent ho-
mogeneous strain for the center unit thread pair.

2. For each detailed elasticity result, deduce an equivalent ho-
mogeneous stress for the center unit thread pair.

3. From all of those strain and stress pairs, deduce a set of
elastic parameters that best maps the strains onto the
stresses.

The next three sections address each of these issues separately.

2 Finding Equivalent Homogeneous Strains
There are subtleties in imposing displacements on the unit cell.

These subtleties originate from the fact that in the actual geom-
etry, except at the top and bottom threads, each cell is attached to
cells above and below it, as illustrated in Fig. 2. This constraint is

satisfied if periodic boundary conditions are imposed explicitly,
however, this is difficult to implement in most finite element
codes.

Instead, constraints are imposed by embedding the unit cell of
interest inside a matrix of similar cells. Displacements are im-
posed in a manner consistent with homogeneous deformation on
the boundaries of that matrix. Labeling locations of nodes, n, on
the boundary of the cell matrix as xn, displacements consistent
with the displacement gradient H �12� are

�un = H · xn + u0 �A1�

where u0 is a rigid body translation. The displacement gradient H
is assumed constant over the cell volume and is found by post-
multiplying the above equation by the local outwardly pointing
normal vector n and integrating over the surface of the control
volume �the central thread pair�

�
�V

��un�dA = H�
�V

�xn�dA + �u0	�
�V

n dA
� �A2�

where the quantities inside brackets are dyads. If evaluated alge-
braically, they would be computed as

�ab�ij = aibj �A3�
Noting that

�
�V

ndA = 0 �A4�

Eq. �A2� becomes

H = UX−1 �A5�
where

U =�
�V

��un�dA �A6�

and

X =�
�V

�xn�dA �A7�

The incremental strain corresponding to this deformation is

��L =
1

2
�H + HT� �A8�

3 Finding Equivalent Homogeneous Stress
The �possibly nonlinear� equilibrium equations are solved to

determine the nodal forces and displacements as well as the
stresses and strains in the elements. There are two expeditious
methods for deducing equivalent homogeneous approximates for
the stress in the thread-pair region.

1. Average the element stresses weighted by the element vol-
umes

� = �
k

�kVk
�
k

Vk �A9�

2. Appropriately integrate the tractions applied to the boundary
of the thread pair.

Both approaches are mathematically equivalent; the approach
used depends on which data are most easily extracted from the
finite element microanalysis of the thread pair and its surrounding
material. Though the mathematics of the first approach is very
simple, the mathematics of the second approach requires some
explanation, as follows.

From the forces �fn on the boundary of the unit cell at the
center of the array of cells, corresponding tractions are defined as
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�̂n = �fn/dAn �A10�

where dAn is the surface area corresponding to node n. An expres-
sion for �L is derived in terms of the �̂n. If the tractions � on the
surface are exactly consistent with a uniform stress field �, those
tractions are expressed in terms of �

��s� = � · n�s� �A11�

where ��s� is the traction at location s on the surface of the cell
and n�s� is the unit outwardly pointing normal there. Taking the
outer vector product of Eq. �A11� and integrating over the surface
yields

�
�V

���s�n�s��dA =�
�V

� · �n�s�n�s��dA �A12�

Factoring � out of the integral on the right and letting Q
=��V�n�s�n�s��dA, obtains �

� =��
�V

���s�n�s��dA� · Q−1 �A13�

Equation �A13� provides a natural manner to define the mean
stress �L associated with the tractions obtained via finite elements

�L = ��
n

��̂nnn�dAn� · Q−1 = ��
n

��fnnn�� · Q−1 �A14�

Since it is assumed that the stress tensor � in Eq. �A11� is
symmetric, Eqs. �A11�–�A14� are also derived easily in the fol-
lowing form:

��s� = n�s� · � �A15�

�
�V

�n�s���s��dA =�
�V

�n�s�n�s��dA · � �A16�

� = Q−1 ·��
�V

�n�s���s��dA� �A17�

and

�R = Q−1 · ��
n

�nn�̂n�dAn� = Q−1 · ��
n

�nn�fn�� �A18�

The symmetry of � is guaranteed by averaging the expressions
for �L and �R in Eqs. �A14� and �A18�

� =
1

2	��n

��fnnn�� · Q−1 + Q−1 · ��
n

�nn�fn��
 �A19�

4 Deducing Elastic Properties
Assuming that a number of elastic finite element calculations

have been performed as outlined above, a systematic method for
processing those results is sought to deduce equivalent elastic pa-
rameters for the thread cell.

Each experiment should yield an array Sm, of length M of strain
values and another array, Tm, of corresponding stress values where
M is the number of components defining the stress or strain state.
The superscript m is the index of the numerical experiment. If all
the equivalent stress and strain fields deduced from the finite ele-
ment calculations are consistent with the same elastic response,
there is a symmetric M �M matrix, E, relating the equivalent
stresses and equivalent strains

Tm = ESm �A20�

Because E is symmetric, it is fully defined by a number, K, of
parameters Ck where K�M�M +1� /2. If further material assump-
tions, such as isotropy or simple orthotropy, are made on E, the

value of K is further reduced. Corresponding to the material pa-
rameters Ck are symmetric matrices, Bk, of dimension M �M
which are defined so that

E = �
k=1

K

CkBk �A21�

For full anisotropy in plane strain elasticity �M =3�, there are
six material properties and E is expressed

E = �C1 C3 C5

C3 C2 C6

C5 C6 C4
� �A22�

In this case,

B1 = �1 0 0

0 0 0

0 0 0
� B2 = �0 0 0

0 1 0

0 0 0
�

B3 = �0 1 0

1 0 0

0 0 0
� B4 = �0 0 0

0 0 0

0 0 1
�

B5 = �0 0 1

0 0 0

1 0 0
� B6 = �0 0 0

0 0 1

0 1 0
� �A23�

The challenge is to find the material parameters Ck. An objec-
tive function R�Ck� associated with Eq. �A20� is defined

R = max
m

�tr��Tm − ESm�TD�Tm − ESm��� �A24�

=max
m

�CjCk tr��Sm�TBj
TDBkS

m�

− 2Cj tr��Sm�TBj
TDTm� + tr��Tm�TDTm�� �A25�

where D is a diagonal matrix capturing the mapping between
shear strain angle and the corresponding component of the strain
tensor. In plane strain

D = �1 0 0

0 1 0

0 0 2
� �A26�

In Eqs. �A24� and �A25�, the stress vectors Tm and strain vec-
tors Sm of each case are each normalized by the largest component
of Sm.

The objective function R�Ck� represents the maximum error
obtained over all of the m numerical experiments used in the
constitutive relationship of Eq. �A20� for a particular set of pa-
rameters Ck. The simplex �fminsearch� tool in the MATLAB Opti-
mization Toolbox is used to minimize the objective function
�which is the maximum residual error� to find the optimal values
of Ck. These optimal values of Ck are then used to construct the
elasticity matrix E using Eq. �A21�.
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A continuous stress field for the mode I crack problem for a per-
fectly plastic material under plane stress loading conditions has
been obtained recently. Here, a kinematically admissible velocity
field is introduced, which is compatible with the continuous stress
field obtained earlier. By associating these two fields together, it is
shown that they constitute a complete solution for the uncontained
plastic flow problem around a finite length internal crack, having
a positive rate of plastic work. The yield condition employed is an
alternative criterion first proposed by Richard von Mises in order
to approximate the plane stress Huber-Mises yield condition,
which is elliptical in shape, to one that is composed of two inter-
secting parabolas in the principal stress plane.
�DOI: 10.1115/1.2338055�

1 Introduction
A statically admissible perfectly plastic solution must satisfy

the equations of equilibrium, the specified yield condition, and
boundary conditions on traction. For a complete perfectly plastic
solution to be constructed, a kinematically admissible velocity
field must also be found, which is consistent with the flow rule,
and which dissipates energy everywhere in the domain �1�.

In �2� a statically admissible solution for a plane stress mode I
perfectly plastic crack problem with a continuous stress field was
found. Here, a related kinematically admissible velocity field that
produces positive plastic work is proposed. Together, they com-
prise a complete solution of the perfectly plastic plane stress mode
I crack problem.

The parabolic Mises yield condition �3� is used in this analysis
as the related Huber-Mises �or J2� yield condition does not allow
a statically admissible solution of the plane stress perfectly plastic
mode I crack problem without the appearance of stress disconti-

nuities �4�. These stress discontinuities preclude a kinematically
admissible velocity field for this particular problem.

The approximation to the J2 yield condition, first proposed by
Richard von Mises �3�, and later elaborated upon by others in
�5,6�, is for plane stress loading conditions

�1 − �2

k
= ±

1

1 + �2
��1 + �2�2 − ��1 + �2

2k
�2	, �0 = 2k �1�

where �0 is the tensile yield strength. Note that the symbol k in
�1� does not represent yield stress in pure shear as it is often used
in the literature.

What distinguishes this approximation �1� over the standard J2
yield criterion is that ellipticity is limited to just two points on the
yield surface.

A plot of yield condition �1� in Fig. 1 reveals a yield surface
composed geometrically of two intersecting parabolas rather than
the conventional ellipse, which is also displayed for comparison.
The positive sign in �1� corresponds to the solid parabola shown
in the figure, while the negative sign corresponds to the broken
parabola. The points where the two separate parabolas intersect
are the only points governed by elliptical partial differential equa-
tions on this yield surface. The remainder of the yield surface is
governed by hyperbolic equations.

2 Stress Field
In Fig. 2, the continuous stress field for the mode I perfectly

plastic solution obtained previously in �2� is plotted in terms of a
polar coordinate system. The origin of this system is located at the
crack tip O of Fig. 3, while the crack surface lies along the line
�=0. This solution remains independent of the polar coordinate r
locally, as measured from the left-hand crack tip.

The plastic stress field for the upper left quadrant of the plane in
Fig. 3 is composed of two regions of uniform stress separated by
a region OBGC having a concentrated fan of mathematical char-
acteristics. The triangular region OAB has a uniaxial state of stress
�x of magnitude 2k, whereas sector OCH on the far left has a
uniform biaxial state of stress of magnitude 2.41k. Because sector
OCH is an elliptically plastic region, no real characteristics exist
for the associated partial differential equation. Consequently, none
are shown in the figure for this region.

The formulas for the stresses �2� plotted in Fig. 2 are given
below for the three distinct regions represented in Fig. 3 as


 �r = 2k cos2 �

�� = 2k sin2 �

�r� = − k sin 2�
�, 0 � � � �OB �2�Contributed by the Applied Mechanics Division of ASME for publication in the
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�r = ak sin

2

3
�� + ���1 −

1

2
cos2 2

3
�� + ��	

�� = ak sin
2

3
�� + ���1 +

1

2
cos2 2

3
�� + ��	

�r� = −
ak

2
cos3 2

3
�� + ��

�, �OB � � � �OC

�3�

�r = �� = ak, �r� = 0, �OC � � � � �4�
where the parameters found within �2�–�4� are defined by

�OB = sin−1 2−1/4 � 57.2 deg, �OC = 3�/2 − 2�OB � 155.5 deg

�5�

� = 2�OB − 3�/4 � − 20.5 deg, a = 1 + �2 � 2.41 �6�
The equilibrium equations in the plane that are satisfied by the

stresses in �2�–�4� are

��r

�r
+

1

r

��r�

��
+

�r − ��

r
= 0 �7�

1

r

���

��
+

��r�

�r
+ 2

�r�

r
= 0 �8�

The following elementary transformations can be used to relate
the stresses in polar form to the principal stresses


�1,�2� = ��r + ���/2 ± ���r − ���2 + 4�r�
2 /2 �9�

It is easily verified that stress fields �2�–�4� satisfy both equi-
librium �7� and �8� and the yield condition �1� using any commer-
cially available symbolic mathematics software and relationships
�9�.

After some simplification, the results obtained by substituting
�3� into �9� are


�1,�2� =
ak

2
�2 sin

2

3
�� + �� ± cos2 2

3
�� + ��	, �OB � � � �OC

�10�
These principal stresses �10� are related to those given implicity in
�5� by substituting equations �82.11� into �72.6�.

Fig. 2 Stresses of the perfectly plastic plane stress mode I
crack problem under the parabolic Mises yield condition †2‡

Fig. 1 A comparison of the Huber-Mises yield locus „ellipse…
with the parabolic Mises yield locus „parabolas…. After †3‡.

Fig. 3 Perfectly plastic velocity field for the plane stress mode I crack problem under the
parabolic Mises yield condition
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3 Velocity Field
A solution of a velocity field compatible with the continuous

stress field �2�–�4� is presented in this section for a rigid elastic/
perfectly plastic mode I crack problem under the parabolic Mises
yield condition �1� assuming plane stress loading conditions. The
solution presented in �2� was for a semi-infinite crack. Here, the
solution is extended to the case of the finite length crack shown in
Fig. 3. Notice a second crack tip is positioned at point A of Fig. 3,
together with a second fan of characteristics centered at A, and a
second biaxial stress region AEL to the far right. The stresses in
regions ABFE and AEL to the right follow immediately from
symmetry considerations with corresponding regions on the left.
They are given explicitly in �7�. For the finite length crack, the
rigid elastic/perfectly plastic boundary follows the two curved
characteristics BF and BG for the upper half-plane. Similar re-
gions are defined for the lower half-plane. Lacking a stress dis-
continuity, a simple kinematically admissible velocity field can be
determined for this particular stress field. The mathematical char-
acteristics for the velocity field coincide with those of the stress
field as they do for the conventional J2 yield condition �5,6�.

The associated flow rule for �1� follows immediately from the
normality condition �1� that must be imposed on strain rates with
respect to the yield surface. These strain rates are

�̇r =
�̇

k
��r − ��

�1 − �2
+

1

2ak
��1 + �2�	 �11�

�̇� =
�̇

k
��� − �r

�1 − �2
+

1

2ak
��1 + �2�	 �12�

	̇r� =
4�̇

k

�r�

�1 − �2
�13�

where �̇r, �̇� are normal strain rates, 	̇r� is a shear strain rate, and

�̇ is a non-negative function of �r ,��.
By substituting �2�–�4� and �10� into �11�–�13� and then elimi-

nating �̇ from �12� and �13�, one obtains the following system of
equations for the fan region OBGC

�̇�

�2/k�sin
2

3
�� + ��

= −
	̇r�

�2/k�cos
2

3
�� + ��

�14�

�̇r = 0, �OB � � � �OC �15�
Equation �15� reflects the inextensibility of the material along ra-
dial characteristics in the upper left-hand fan of Fig. 3.

Now, in general, strain rates can be related to the radial velocity
vr and transverse velocity v� by the following equations

�̇r =
�vr

�r
, �̇� =

1

r

�v�

��
+

vr

r
, 	̇r� =

1

r

�vr

��
+

�v�

�r
−

v�

r
�16�

By substituting �16� into �14�, the relationship becomes

�v�

��
+ vr = − tan

2

3
�� + ��� �vr

��
+ r

�v�

�r
− v�� �17�

Let us now assume a velocity field that is independent of r so
that �15� is trivially satisfied. In addition, the following term van-
ishes in �17�

�v�/�r = 0 �18�
which reduces the partial differential equation to the ordinary dif-
ferential equation below

vr��� + tan
2

3
�� + ��

dvr���
d�

= tan
2

3
�� + ��v���� −

dv����
d�

�19�

A more general relationship in a nonorthogonal coordinate sys-
tem based on the characteristic directions in the fan is given in
�5,6�.

An attempt will now be made to find a velocity field whose
general behavior roughly resembles that of a mode I linear elastic
displacement field. To this end, one notes that a simple solution of
�19� exists in the form

vr��� = v0 sin
2

3
�� + ��, v���� = v0 cos

2

3
�� + �� ,

�OB � � � �OC �20�

where v0 is a constant. The above velocity can be shown to be
tangent to the family of curved characteristics in the fan OBGC,
which are expressible in polar coordinates by

r = rc/cos3/2 2

3
�� + ��, �OB � � � �OC �21�

where rc is constant along a particular characteristic. A general
discussion of the fan characteristics for �1� is given in �5,6�. There
a relationship similar to �21� was derived although the orientation
of the field and the constant � were different. The in-plane flow
pattern associated with solution �20� along characteristics defined
by �21� is illustrated in the fan region OBGC of Fig. 3.

Recalling that in the linear elastic mode I crack solution the
displacements along the crack are vertical and symmetrical with
respect to the y axis, let us propose that region OAB of the plastic
stress field moves upward as a rigid plastic block with uniform
speed V, i.e.,

vr = V sin �, v� = V cos �, 0 � � � �OB �22�
A corresponding rigid block moves downward with a constant

speed V on the opposite side of the crack. With this assumption, a
velocity discontinuity must exist across line OB, which separates
the fan from the uniform stress region. To have a continuous ve-
locity field in the direction of the curved characteristics across
OB, as indicated in Fig. 3, one must impose the following rela-
tionship between parameters V and v0

v0 =
V

2 sin �OB
=

V

23/4 � 0.595V �23�

A velocity discontinuity of magnitude v0 therefore exists in the
radial direction across OB.

The rigid elastic region above the fan is assumed motionless.
This assumption creates another velocity discontinuity along the
boundary BG as the adjacent material is moving tangentially with
a speed v0.

On the other side of the fan OBGC, a radial velocity field of
constant speed is proposed for the elliptic plastic region, which
lacks the two families of mathematical characteristics found in the
hyperbolic plastic regions. This region behaves mathematically
similar to plastic material associated with the square corners of the
Tresca yield condition �1�. A radial velocity field is chosen for this
region, as it accounts for the necessary symmetry condition of a
horizontal velocity along the crack axis, while allowing for con-
tinuous velocity across line OC of Fig. 3. Mathematically, this
velocity field is expressed as

vr = v0, v� = 0, �OC � � � � �24�
The velocity fields for the other three quadrants of the plane are

defined in a similar fashion such that obvious symmetry condi-
tions are met.

4 Energy Dissipation
Given a statically admissible, perfectly plastic stress field, the

choice of a compatible velocity field is often nonunique. A par-
ticular kinematically admissible velocity field must also be
checked for energy dissipation as a physical requirement �1�.
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In regard to fracture mechanics, one can observe in �8� that both
the Prandtl and Hill velocity analogies of the lubricated punch
problem for a perfectly plastic, plane strain, mode I crack problem
are kinematically admissible and satisfy the upper bound theorem
of classical plasticity �1�.

In this section the rates of plastic work for the stress and veloc-
ity fields presented in the previous sections are proven positive.
There are two categories of energy dissipation that need to be
individually considered �1�, i.e.,

Ḋ1 = �r�̇r + ���̇� + �r�	̇r�

�25�
Ḋ2 = − �
v

The first Ḋ1 is the rate of energy dissipation per unit volume due

to plastic deformation itself. The second Ḋ2 is the rate of energy
dissipation per unit area due to traction � between adjacent sur-
faces, which undergo relative motion 
v.

In the three distinct sectors comprising the solution shown in
Fig. 3, one finds for the first energy contribution

Ḋ1 =

0�rigid plastic region� , 0 � � � �OB

ak

12

v0

r
�3 − cos

4

3
�� + ��� , �OB � � � �OC

ak
v0

r
, �OC � � � �

� �26�

The second components of energy dissipation are along the char-
acteristics OB and BG, respectively, where velocity discontinui-
ties occur

Ḋ2 = 
OB: 0.911kv0, � = �OB

BG:
akv0

2
cos3 2

3
�� + �� , �OB � � � �OC � �27�

As all possible energy contributions due to plastic deformation
and plastic flow dissipate energy �are non-negative�, one may con-
clude that the two fields are physically acceptable from an energy
standpoint.

5 Discussion
Alternative boundary conditions to those proposed in Sec. 3

have also been investigated. However, the nonorthogonality of
plane stress mathematical characteristics place severe restrictions
on the types of flow that can be realized.

One might consider allowing the rigid elastic regions BFG and
IJK of Fig. 3 to move vertically upward and vertically downward
respectively with finite speed U. Symmetry arguments combined
with the rigidity of the elastic material rule out other possibilities
regarding motion of these rigid elastic regions. However, a finite
velocity solution with continuous normal components across BG
cannot be constructed that does not violate material integrity
across the elastic-plastic boundary.

To resolve this issue of gaps and interpenetration of material
along BG, one might consider next that localized necking occurs
along that characteristic curve. Unlike plane strain problems,
where only discontinuous tangential components of velocity are

allowed, plane stress problems do permit discontinuous normal
components of velocity across elastic-plastic boundaries as well,
provided the concept of localized necking is introduced. However,
localized necking itself places certain restrictions on the relative
velocity of the surfaces along the characteristic interface. Physi-
cally, the relative velocity must be perpendicular to the second
family of characteristics, which meet the primary characteristic
along which necking is assumed to occur, see �1�, pp. 272–274,
for the Huber-Mises yield condition. In the case of necking along
the characteristic BG of Fig. 3, this condition requires that the
relative velocity �or velocity discontinuity� of the surfaces be in
the transverse � direction. Consequently, the velocity in the radial
direction across the elastic-plastic boundary must remain continu-
ous. This restriction on velocity across BG indicates that the only
possible solution is a rigid body motion or, in other words, a
situation where no necking occurs. Instead plastic region COBG
moves upward at the same speed U as the rigid elastic region
BFG.

Nevertheless, a rigid body motion U for region COBG �and
consequentially rigid plastic region OAB� might be superposed
over the solution already proposed in Sec. 3, as the partial differ-
ential equations governing velocity are linear, to meet this addi-
tional boundary condition. This assumption would necessitate ad-
ditional deformation in plastic region OCH and the corresponding
section on the right AEL. For example, a velocity vy might be
proposed in region OCH, which varies linearly with � while as-
suming a value U along OC and zero along the crack axis to
maintain symmetry. The choice of possible velocity fields for
OCH is naturally unlimited as this region has indeterminate prin-
cipal directions for stress in the plane and consequently a much
greater degree of freedom than those plastic regions possessing
two families of mathematical characteristics. A solution of this
type would produce a two-parameter model for velocity 
U ,V�.

The use of the velocity field given here was applied in �7�.
There a minor modification of the velocity field of Sec. 3 in re-
gions OCH and AEL of Fig. 3 was made to define continuous and
smooth perfectly plastic caustics across lines OC, OH, AE, and
AL under the parabolic Mises yield condition. This result was
compared to caustics obtained for the Huber-Mises and the Tresca
yield conditions.
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An analysis of large deformations of flexible membrane structures
within the tension field theory is considered. A modification of the
finite element procedure by Roddeman et al. (Roddeman, D. G.,
Drukker, J., Oomens, C. W. J., Janssen, J. D., 1987, ASME J.
Appl. Mech. 54, pp. 884–892) is proposed to study the wrinkling
behavior of a membrane element. The state of stress in the ele-
ment is determined through a modified deformation gradient cor-
responding to a fictive nonwrinkled surface. The new model uses a
continuously modified deformation gradient to capture the loca-
tion orientation of wrinkles more precisely. It is argued that the
fictive nonwrinkled surface may be looked upon as an everywhere-
taut surface in the limit as the minor (tensile) principal stresses
over the wrinkled portions go to zero. Accordingly, the modified
deformation gradient is thought of as the limit of a sequence of
everywhere-differentiable tensors. Under dynamic excitations, the
governing equations are weakly projected to arrive at a system of
nonlinear ordinary differential equations that is solved using dif-
ferent integration schemes. It is concluded that implicit integra-
tors work much better than explicit ones in the present
context. �DOI: 10.1115/1.2338057�

1 Introduction
Space missions often use membrane structures of different

shapes and sizes. These deployable structures consist of thin poly-
mer films. Because of their negligibly small flexural stiffness,
membranes cannot sustain compressive stresses beyond a certain
level. Accordingly, regions wherein compressive stresses tend to
breach this minimal level buckle locally and wrinkles form. The
presence of wrinkles in a membrane structure may significantly
influence the static and dynamic behavior of a space system con-
taining membranes. It is therefore important to develop numeri-
cally accurate and computationally efficient methods for the pre-
diction of wrinkled zones in a membrane. A few approaches,
especially within the tension field theory �1�, have been developed
over the years to analyze wrinkled membranes. Mansfield �2� re-
formulated Wagner’s theory by replacing the strain energy by a
suitably relaxed energy density and with the work of Pipkin �3�
the theory was incorporated to handle membrane wrinkling. It has
been postulated that compressive stresses are eliminated when
wrinkles form and the major principal stress is non-negative �ten-
sile� everywhere in the membrane �4,5�. Based on the approach by
Wu �6�, Roddeman et al. �7� have accounted for wrinkling by
replacing a given deformation gradient tensor, which would result

in negative Cauchy stresses in the membrane, by a modified de-
formation gradient tensor using a parameter variable ��� measur-
ing physical wrinkliness. Finite element analyses of wrinkling are
given in Ref. �8�. The theory have also been developed for aniso-
tropic �9� and orthotropic �10� materials.

The main aim of this study is to modify and improve upon the
wrinkled element model by Roddeman et al. �7� and thus treat the
wrinkliness parameter, �, to be a spatially varying smooth �con-
tinuous and differentiable almost everywhere� function, which
may be discretized and interpolated. Use of this parameter func-
tion modifies the deformation gradient so the actually deformed
and wrinkled surface is projected onto a fictive nonwrinkled sur-
face. It is argued that the modified deformation gradient may be
thought of as the limit of a sequence of differentiable tensor func-
tions and this allows one to treat the parameter function ��X� as a
differentiable function. The proposed strategy, implemented via
the finite element method, is demonstrated with a few numerical
examples. A convergence study is also undertaken to validate the
functional representation of ��X�. The model is then applied for
dynamic analysis of wrinkled membranes and to temporally inte-
grate the discretized equations of motion using a few implicit and
explicit numerical schemes.

2 Basic Equations for the Analysis of Wrinkles
Wrinkles on a thin membrane are the results of local buckling

due to compressive stress fields. However, within the tension field
theory, deformations due to compressive stresses cannot be ac-
counted for. Thus, once wrinkles are present, the basic governing
equations must be modified �7� and it is accordingly necessary to
have the following assumptions: �i� plane stress theory is appli-
cable; �ii� flexure does not introduce stresses in the membrane;
and �iii� the membrane is not able to support any compressive
�negative� stresses �i.e., if a negative stress tends to appear, the
membrane will wrinkle at once�. For the so-called “Cauchy-
elastic” materials, the constitutive equation may be written as

� = �1/J�FH�E�FT �1�

with F being the deformation gradient; J=det�F� the Jacobian of
F; E is the Green-Lagrange strain; H a tensor function of E �de-
scribing the material constitutive relation� and � the Cauchy stress
tensor. The superscript “T” denotes transpositions of second order
tensors. F corresponds to the “real” deformation gradient and this
could result in negative Cauchy stresses thereby resulting in the
corresponding portions of the membrane getting wrinkled. Thus
the deformation gradient of the fictive, nonwrinkled membrane
segment, corresponding to non-negative principal stresses, is
given by �7�

F� = �I + ��n1 � n1�� · F �2�

where I is the unit second order tensor and the scalar parameter
��0 is a measure of the stretching required along the direction of
the negative stress. Using F� in the constitutive equation �1�, the
stress state may be determined by

��F�� = 1/J�F� · H�E�� · F�T �3�
where,

E� = 1/2�F�T · F� − I�; J� = det�F�� �4�

2.1 A Continuous Representation of �. Let X= �x ,y ,z� be
an inertially fixed Cartesian coordinate system and let the mem-
brane surface in initial �reference� configuration be denoted as M0
and let it be sufficiently smooth so that it may be characterized by
a collection of tangent planes �bundle� TM0�P0� ∀ P0 where P0 is
a material point on M0 with coordinate X0. Let the deformed
membrane surface, denoted by MD and characterized through tan-
gent planes TMD�PD0� with PD0 being the image of P0 on MD, be
partially wrinkled and partially taut. If PD0 is in a wrinkled zone,
an infinitesimally small open neighborhood around PD0 must un-
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dergo stretching until the wrinkles just vanish whilst the tensile
forces remain unaffected. On the other hand, if PD0 belongs to the
taut zone, no changes are effected in the open neighborhood. In

this way, one can define a fictive, smooth, nonwrinkled surface M̄,

characterized by tangent planes TM̄�P̄�, which would provide a
gross description of the surface MD such that the strain energy
density remains the same. Thus, unlike the theory by Roddeman

et al. �7�, the surface M̄ is presently so formed that the wrinkles on
MD are now stretched out by a spatially continuous kinematical

process. Let P̄0 be the image of PD0 on M̄. Let dA0, dAD0, and dĀ0

be infinitesimal areas respectively around the points P0, PD0, P̄0

on TM0�P0�, TMD�PD0�, and TM̄�P̄0� �see Fig. 1�. If X0, XD0, and

X̄0 are, respectively, the coordinate vectors of P0, PD0, and P̄0,
then the actual deformation vector of P0 may be defined as uD0
=XD0−X0. Assuming that PD0 is within a wrinkled zone and that

�ū0 is the stretching vector needed to move PD0 to P̄0, one readily
has the identity

X̄0 = X0 + uD0 + �ū0 ∀ P0 � M0 �5�

Note that TM̄�P̄0� has a two-dimensional vector space structure

spanned by the unit orthogonal vectors n̄1�P̄0� �denoting the di-
rection of the zero principal Cauchy stress component and hence

that of stretching� and n2�P̄0�.

Thus one has, DB� = �n̄1 � n̄1� · XD0 �6�

Let, �ū0=��X0�DB� =��X0��n̄1 � n̄1� ·XD0, for some ��X0��R+.
Then

X̄0 = XD0 + �ū0 = XD0 + ��X0��n̄1 � n̄1� · XD0 �7�

Thus, �X̄0 /�X0=�XD0 /�X0+��X0��n̄1 � n̄1� ·�XD0 /�X0= �I
+��X0��n̄1 � n̄1�� ·�XD0 /�X0.

In other words

F̄�X0� = �I + ��X0��n̄1 � n̄1�� · FD�X0� �8�

where F̄�X0� and FD�X0� are the deformation gradients for the

reference point P0 corresponding to TM̄�P̄0� and TMD�PD0�, re-
spectively. From Fig. 1, one may also write down the following
identities for infinitesimal volume and area elements:

dVD0 = �FD�X0��dV0 �9�

dV̄0 = �F̄�X0��dV0

= ��I + ��X0��n1 � n1�� · FD�X0��dV0

i.e., dV̄0 = ��I + ��X0��n1 � n1����FD�X0��dV0 = ��I + ��X0��n1

� n1���dVD0 �10�

Moreover

dĀ0D = ��I + ��X0��n1 � n1���dAD0D �11�

or

�dĀ0 � dĀ0 − dAD0 = ���X0��n̄1 � n̄1��dAD0 �12�

where D is the membrane thickness after deformation. Equation
�12�, when written in an integral form, provides a qualitative de-

Fig. 1 Actual geometry of membrane in space

Fig. 2 „a… Direction of principal Cauchy frame is indicated by
the angle � and „b… triangular element, �1, �2, and �3 material
coordinates

Fig. 3 „a… Geometry of the triangular membrane discretized with „b… mesh 0 „2 elements…, „c…
mesh 1 „6 elements…, „d… mesh 2 „10 elements…, „e… mesh 3 „14 elements…, and „f… Mesh 4 „18
elements…
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scription of the fictitious stretching needed to be applied to an area

element on MD so as to be projected on M̄. Since the point X0
�M0 is arbitrarily chosen, it follows that the parameter ��X� is a
continuous function of the reference coordinate. Indeed, the con-
tinuity of ��X� is needed so that the strain tensor

Ē = 1/2�F̄T · F̄ − I� �13�

and the strain energy density W̄�F̄� defined with respect to M̄
remain continuous. For any point in the taut region, one has

��X�=0 �implying that �dĀ=0� and for any point in the wrinkled

region, one has ��X��0 �implying that �dĀ�0�. While W̄�F̄� is
rank one convex over the taut region �guaranteeing the uniqueness
of the solution in the strong sense�, it is nonconvex with rank zero

over the wrinkled portion �11�. When rank-one convexity of W̄�F̄�
fails to hold, deformations cannot be expressed in terms of clas-
sically known smooth functions �12�. Deformations of this nature
may be expressed through generalized curves, which are limits of
sequences of ordinary functions with rapidly oscillating deriva-
tives. When this happens �as in the case of the wrinkled portion of
the surface MD�, the deformation gradient may generally be taken
to be everywhere continuous, but nowhere differentiable over the

wrinkled region. However, the fictive surface M̄ may be thought
of as a surface in the limit as the minor principal stress over the
wrinkled portion goes to zero from the positive �tension� side.
Consequently, over this portion, the Cauchy-Green strain tensor in
the limit may be written as

G = F̄TF̄ = �̄2n̄2 � n̄2 + �̄2n̄1 � n̄1 with �̄ → 1+, �̄ � 1 �14�

where �̄ and �̄ are the principal stretches. Since ��X� is a differ-

entiable function for the taut region ��̄��̄�1�, it may be consid-
ered as a limit of a sequence of continuous and differentiable
�almost everywhere� functions for portions where Eq. �14� holds.
In other words, for finite precision computations, one may actu-

ally consider F̄ to be an almost-everywhere differentiable tensor

function on M̄, a premise that is not valid for MD. It is also worth

noting �̄ and �̄ on M̄ are associated with the following two in-
variants under the assumption of incompressibility:

I1 = �� = �det G�1/2 �15�

I2 = �2 + �2 = �tr G + 2I1�1/2 �16�

It is interesting to note that a similar modification for the fictive
deformation gradient as in Eq. �8� is possible, in principle, for
analyzing slack regions as well. In particular, one may introduce
two parameter functions �1�X� and �2�X� so that the expression
for the modified deformation gradient becomes

F̄�X� = �I + �1�X��n̄1 � n̄1� + �2�X��n̄2 � n̄2�� · FD�X� �17�

3 The Finite Element (FE) Formulation
The strong form of equilibrium equations may be written as:

� · � = 0 �18�

The integral �weak� form of the equilibrium equation �18� is �7�

�
V0

�:��0	�TdV0 =�
A0

f0 · 	dA0 �19�

where 	 is a kinematically consistent vector function, �
=S−1�J�� is the first Piola Kirchhoff �nonsymmetric� stress tensor;
S is the deformation gradient �of TMD with respect to TM0� with-
out considering variations in membrane thickness and f0 is the
force on the deformed surface transformed to the undeformed �ini-
tial� surface and �0 is the gradient operator with respect to the
initial configuration. Equation �19� is solved by the finite element
method taking ��X�=��x ,y� as a spatially varying, differentiable
function, which may be discretized and interpolated through a
usual FE procedure like the other dependent variables. Obviously,
element sizes become infinitesimally small, � in different ele-
ments also approach constant values and in that sense the pro-
posed FE model apparently approaches the one proposed by Rod-

deman et al. �7�. If the element size is finite, F̄ via Roddeman’s
theory would be discontinuous and this appears to be inconsistent
with the physics of the problem. Also, Roddeman’s theory does
not admit a solution through a mesh-free or an element-free
approach.

The generic form of the position vector of a material point in a
triangular isoparametric element is given by

X̃�
1,
2� = �k�
1,
2�X̃k + 
3D̃�
1,
2�ñ3�
1,
2� �20�

where �k are shape functions to determine X̃, 
1, 
2, and 
3 �Fig.

2� are isoparametric material coordinates, D̃�
1 ,
2� is the generic

thickness at the material position �
1 ,
2�, X̃k are position vectors
of the nodal points, ñ3 is the outward normal vector at �
1 ,
2�.

Now as in Ref. �7� the real stresses in wrinkled membrane are
determined by modifying the deformation tensor in the constitu-
tive equation as

�J��
1
2
= F̄
1
2

H�Ē
1
2
�F̄
1
2

T �21�

�
1
2
= S̄
1
2

−1 �J�
1
2
� �22�

with

F̄
1
2
= �I + ��
1,
1��n̄1�
1,
2� � n̄1�
1,
2���F
1
2

�23�

S̄
1
2
= �I + ��
1,
1��n̄1�
1,
2� � n̄1�
1,
2���S
1
2

�24�

The direction of the principal Cauchy frame is determined by the
angle ��
1 ,
2�. �, �, and D are determined by using the coupled
conditions

Table 1 Convergence of � at node 3 for increasing mesh density

DOF

Uniform � � continuously varies

Element1 Element2
Absolute
difference Element1 Element2

Absolute
difference

27 2.5
10−3 2.1
10−3 0.4
10−3 3.9
10−3 3.1
10−3 0.7
10−3

57 2.3
10−3 1.9
10−3 0.4
10−3 3.2
10−3 2.7
10−3 0.5
10−3

87 2.0
10−3 1.7
10−3 0.3
10−3 2.6
10−3 2.4
10−3 0.2
10−3

117 1.9
10−3 1.7
10−3 0.2
10−3 2.2
10−3 2.1
10−3 0.1
10−3

147 1.8
10−3 1.6
10−3 0.2
10−3 2.1
10−3 2.1
10−3 0
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�a� there is no stress in wrinkling direction, i.e.,

n̄1 · �J�� · n̄1 = 0 �25�
�b� the frame n̄1, n̄2, n̄3 is a principal frame, i.e.,

n̄1 · �J�� · n̄2 = 0 �26�
�c� the membrane is in a state of plane stress, i.e.,

n̄3 · �J�� · n̄3 = 0 �27�

Once the modified stress tensor is calculated one obtains the
finally projected form of the response equations as

Klk�U�uk = f l �28�

where Klk is the �l ,k�th 3
3 submatrix of the nonlinear stiffness
matrix, U= �uk� the discretized displacement vector and f l�R3 the
prescribed nodal force on node l.

Numerical Implementation and Examples. A limited numeri-
cal exploration of the proposed algorithm for static and dynamic

wrinkling analysis of a linear and isotropic membrane is con-
ducted with the following properties: E=270 MPa, �=0.4, D0
=1 mm. First consider a plane triangular membrane subjected to a
concentrated force as shown in Fig. 3. The membrane is modeled
through six-noded triangular elements. Values of � at apex point 3
with increasing mesh density towards node 3 are shown in Table 1
and checked against a constant approximation for � across a given
element. Next, a p-convergence study is performed using triangu-
lar elements with increasing number of nodes, i.e., 6-, 9-, and
15-noded elements. The convergence of � at point 3 for different
element types is shown in Table 2. It is seen that a superior rate of
convergence is achievable through a continuous representation of
� as compared with the original model by Roddeman et al. �1�.

4 FE Analysis of Dynamically Wrinkled Membranes
The strong form of the equations of motion is

Fig. 4 „a… Geometry and loading pattern of the triangular membrane; comparison of displace-
ment history at node 3 via MTL-Lagrangian, Newmark „�=0.25, �=0.5…, and Runge-Kutta
method for time-varying load, „b… h=0.01 s; „c… h=0.05 s; „d… h=0.2 s

Table 2 Convergence of � at node 3 with increasing node numbers

6-noded 9-noded 15-noded

Total
DOF

Absolute
difference in �

Total
DOF

Absolute
difference in �

Total
DOF

Absolute
difference in �

27 0.7
10−3 42 0.6
10−3 75 0.5
10−3

57 0.5
10−3 93 0.2
10−3 129 0.05
10−3

87 0.2
10−3 117 0.1
10−3 207 0
117 0.1
10−3 144 0.0025
10−3 – –
147 0 201 0 – –
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� · � + c
�u

�t
+ �

�2u

�t2 = 0 �29�

where � and c are, respectively, the mass density and viscous
damping coefficient. For undamped systems, one has c=0. � is

the gradient operator on the tangent space TM̄ associated de-

formed �fictive� configuration M̄ and � is the real Cauchy stress
tensor. The integral �weak� form of Eq. �29� is

�
V

�� · �� · 	dV + c�
V

�u

�t
· 	dV + ��

V

�2u

�t2 · 	dV = 0 �30�

where the vector function 	 work as both the test and the shape
functions. Considering the midsurface �
3=0�, solution u of Eq.
�30� is approximated as u�
1 ,
2 , t�=	k�
1 ,
2�uk�t� so that the dis-
cretized equations of motion, after assembly over elements and
with respect to a fixed reference frame, are

�M��Ü� + �C��U̇� + �K��U�,t���U� = �F�t�� �31�

Numerical Examples. A plane triangular membrane shown in
Fig. 4�a� is considered. The membrane is subjected to a linearly
time-varying load. Material properties and the membrane thick-
ness are taken to be the same as those in Sec. 3. Numerical inte-
gration has been performed using two second order implicit meth-
ods �i.e., the multistep transversal linearization �MTL� �13� and
Newmark methods and a fourth order explicit Runge-Kutta
method. In Figs. 4�b�–4�d�, displacement histories at node 3, ob-
tained via the MTL, Newmark, and Runge-Kutta methods, are
plotted for different choices of the temporal step size h. It is
observed that both the implicit methods work in a stable and ac-
curate manner even for much higher values of h �such as h=0.2�
while the explicit Runge-Kutta method yields inaccurate results
for such values of h �even though it has a higher formal order of
accuracy than MTL and Newmark�. The implicit methods are
computationally a little costlier. However, numerical experiments
indicate that if one uses the maximum permissible h for each of
these methods �without compromising the numerical accuracy�,
the computing costs in all these methods are well comparable.
Nevertheless, given a rather sensitive dependence of explicit
methods to h, implicit methods remain the preferred option.

5 Concluding Remarks
A weak, finite element-based formulation for static and dy-

namic analyses of wrinkled membranes is presented and numeri-

cally explored to an extent. A spatially continuous and differen-
tiable �almost everywhere� parameter function ��X� is used to
modify the deformation gradient so the computed solution may be
projected on a fictive nonwrinkled surface. This is the main point
of departure of the proposed method from the one by Roddeman
et al. �1�. Through limited numerical illustrations, it is verified that
the present formulation allows for a spatially accurate determina-
tion of wrinkling locations and orientations. Since one has ��X�
�0 only over the wrinkled regions, it follows that ��X� is local-
ized and compactly supported. Thus the use of wavelet-based in-
terpolating functions may help in a more accurate prediction of
��X� with significantly lesser computational costs. Under dynamic
loading, the weakly projected membrane equations are numeri-
cally integrated via second-order MTL, Newmark �both implicit�,
and a fourth-order Runge-Kutta �explicit� schemes. It is observed
that both the implicit schemes offer consistently better results than
the Runge-Kutta scheme, especially for higher step sizes.
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A model for sliding contact of a thermoelastic rod is considered
and is subjected to a multiple scales analysis to uncover its non-
linear behavior near a neutrally stable state. The analysis reveals
a combination of the contact resistance and frictional intensity
that describes the generic unfolding of this critical state and its
associated bifurcations. In particular, the system can describe
how two equilibria coalesce in a saddle-node bifurcation and gen-
eralizes stability criteria that have been presented previously in
the literature for this model. Moreover, this analysis describes the
role of the initial deformation of the rod on its long-term dynami-
cal behavior. �DOI: 10.1115/1.2423034�

1 Introduction and Formulation
The frictional heating that accompanies relative motion be-

tween two surfaces can give rise to thermoelastic deformation,
leading to qualitative changes in the dynamical behavior of the
system, including frictionally excited thermoelastic instabilities
�TEI� �see Ref. �1�, and references therein�. Such situations arise
in engineering applications incorporating brakes and clutches, as
well as bearings and other mechanical components in which the
possibility for fictional sliding exists. This response can be mod-
eled whereby both heat generation and the thermal contact resis-
tance depend on the contact pressure �2�. The latter can be as-
sumed to arise from surface roughness between contacting bodies
and alone can lead to instability and nonuniqueness of equilibria
in thermoelastic contact problems �3�. Ciavarella et al. �4� studied
the interaction of the thermal contact resistance and frictional
heating in a thermoelastic rod contacting a rigid wall. In this work
the frictional heating q per unit area was assumed to be

q = fVp

where f is the coefficient of friction, V is the contact velocity, and
p is the contact pressure. Above some critical sliding speed, they
found that for some initial conditions the contact pressure grows
without bound �seizure� while below the critical speed the system
always tends to a steady state. Likewise, Afferrante and Ciavarella
�5� considered TEI in the presence of sliding friction within the
“Aldo model” in which multiple rods are in contact of the sliding
surface, with the total normal force is prescribed. While seizure is
no longer possible in this model, for certain parameter values the
uniform-pressure solution is no longer unique and can be unstable.

In the absence of frictional sliding, Quinn and Pelesko �6� in-
vestigated the nonlinear stability of equilibrium states in a one
dimensional model of a thermoelastic rod using a multiple scales
analysis. When the linear stability of the steady state is marginal,
the equilibrium solution was shown to exhibit a fold type bifurca-
tion. In the present paper, a multiple scales analysis is again ap-

plied to a one-dimensional thermoelastic rod with pressure-
dependent effects arising from both the thermal contact resistance
and frictional sliding.

Consider a one-dimensional thermoelastic rod suspended be-
tween a rigid wall and a moving surface. The interface between
the moving surface and the stationary rod is assumed to be rough,
so that frictional sliding occurs, which generates heat dependent
on the surface characteristics and contact pressure. The nondimen-
sional temperature is defined as ��x , t�, and at the wall ��0, t�=0,
while the temperature of the surface is assumed to be constant,
equal to 1. The rod is assumed to be homogeneous and isotropic,
possessing constant thermal and linear elastic material properties,
and the nondimensional equations describing the thermal field can
be written as

��

�t
=

�2�

�x2 �1a�

��0,t� = 0 �1b�

��

�x
�1,t� =

1 − ��1,t�
R���

+ F��� �1c�

� = − ��
0

1

���,t�d� �1d�

In these equations, � describes the �nondimensional� stress-free
length of the rod and is proportional to the contact pressure p of
Ciavarella et al. �4�. The parameter � is a nondimensional coeffi-
cient of thermal expansion and is proportional to the temperature
difference between the wall and the sliding surface.

R��� is the contact resistance function while F��� describes the
heat generated by the frictional sliding at x=1. The contact resis-
tance function R��� and the frictional intensity function F��� are
central to the analysis of the behavior of this thermoelastic sys-
tem. In this formulation F��� can be identified with q as described
by Ciavarella et al. �4�, although in what follows no specific con-
stitutive relationship will be assumed. Intuitively one can imagine
that there would be neither conductive heat transfer nor frictional
heat generation between the thermoelastic rod and the sliding belt
if there is a gap, while under contact as the normal pressure is
increased both the thermal resistance and frictional intensity vary.
Both of these constitutive functions depend on the �. In the ab-
sence of F���, these equations are identical to those considered by
Quinn and Pelesko �6�.

The contact resistance function R��� and the reciprocal contact
resistance function K���=1/ �1+R����, as defined by Quinn and
Pelesko �6�, are used for this model. The frictional intensity func-
tion is of the form

F��� � 0, ∀ � and lim
�→−�

F��� = 0

For this study it will be convenient to define the contact func-
tion H��� as

H��� = F���� R���
1 + R����

which has the following properties:

H��� � 0, ∀ � and lim
�→−�

H��� = 0

2 Nonlinear Theory
The method of multiple scales is used to account for the non-

linearities present in the governing equations. We begin the non-
linear analysis by expanding the bifurcation parameter � as a se-
ries in �

� = �0 + ��1 + �2�2 + �3�3 + ¯
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In the following analysis the system is assumed to be neutrally
stable when �=�0, that is, when �=0. Hence, � characterizes the
distance, in terms of the bifurcation parameter �, from neutral
stability. The conditions on K and H corresponding to neutral
stability will arise in the analysis below. The method of multiple
scales stretches time as

t0 = t, t1 = �t, t2 = �2t, . . .

and both � and � are expanded in �

��x,t� = �0�x� + ��1�x,t� + �2�2�x,t� + ¯

� = �0 + ��1 + �2�2 + ¯

Finally, the reciprocal contact resistance function K��� and the
reciprocal frictional intensity function H��� are expanded in �
about �0. Following Quinn and Pelesko �6�, a marginally stable
equilibrium point is assumed to exist at �=�0, so that K��0�
=K0 and H��0�=H0. The behavior of the solution near this state is
investigated through the introduction of the following scalings:

K0� = K0� + �2k0�, H0� = H0� + �2h0�

K0� = �k0�, H0� = �h0�

K0� = k0�, H0� = h0� �2�

so that H��� and K��� are written as

K��� = K0 + �K0��1�� + �K0��2��2 + �k0��1 +
k0�

2
�1

2 +
k0�

6
�1

3

+ K0��3	�3 + ¯

H��� = H0 + �H0��1�� + �H0��2��2 + �h0��1 +
h0�

2
�1

2 +
h0�

6
�1

3

+ H0��3	�3 + ¯

so that h0�, k0�, h0�, k0�, h0�, and k0� characterize the boundary con-
dition Eq. �1c� at x=1 near the marginally stable state, recovered
for �=0. These expansions are introduced into Eqs. �1� and terms
are collected at each order of �

O��0�:
��0

�t0
=

�2�0

�x2 , �0�0,t� = 0

�1 − K0� ·
��0

�x
�1,t� = K0 · �1 − ��1,t�� + H0

�0 = − �0�
0

1

�0�x,t�dx �3�

O��1�:
��0

�t1
+

��1

�t0
=

�2�1

�x2 , �1�0,t� = 0

�1 − K0�
��1

�x
�1,t� − �K0��1�

��0

�x
�1,t�

= − K0�1�1,t� + �K0��1��1 − �0�1,t�� + �H0��1�

�1 = − �0�
0

1

�1�x,t�dx − �1�
0

1

�0�x,t�dx �4�

The O��2� and O��3� equations, while straightforward, are not
shown for succinctness of presentation.

The multiple scales analysis proceeds by solving the above sys-
tem of equations at each order in �, which results in a series of

linear variational equations. To ensure that the solution to these
equations is bounded, we remove all secular terms by appropriate
choices which ultimately determine the nonlinear stability of the
system.

At lowest order, the dominant solution is given as �0�x , t�
=A0x, where

A0 = K��0� + H��0� = constant, �0 =
− �0

2
A0 �5�

This expression is equivalent to the condition for the steady-
state solution identified by Ciavarella et al. �4�. From the lowest
order solution one can identify A0, the thermal gradient, with �0,
the nondimensional variable related to the thermal expansion.

Moving on to O���, we again assume a separable solution. We
find that the eigenvalues of the characteristic equation are all non-
positive, and decay exponentially, with the exception of the solu-
tion of the form

�1�x,t� = A1�t1,t2,t3, . . . �x

The coefficient A1 is allowed to vary on timescales t=�t and
slower. This will be denoted by A1�t1�, and will explicitly list only
the fastest time scale. The remaining have been suppressed for
clarity. This solution corresponds to the eigenvalue at the origin
and leads to the solvability equation

�1 +
�0

2
�K0� + H0��	A1 + ��1

2
�K0� + H0��	A0 = 1

This equation is satisfied for all values of A1 provided

�0 = −
2

�K0� + H0��
, �1 = 0

This condition is necessary for the neutral stability of the system
for �=0.

At order �2 the solution has the general form:

�2�x,t� = A2�t1�x +
�A1

�t1

x3

6

whose solvability equation is

�A1

�t1
� 5

12
−

K0

3
� − ��2

�0
�A0 = 0

which is satisfied for

�A1

�t1
= 0, �2 = 0

With this, A1 does not vary on the time scale t1, and can be
written as A1=A1�t2�.

Finally at order �3 the solution has a general form

�3�x,t� = A3�t1�x + � �A1

�t2
+

�A2

�t1
� x3

6

and the solvability equation is

0 = �5 − 4K0

12
�� �A2

�t1
+

�A1

�t2
� +

�0

2
�k0� + h0��A1 − ��0

2
�2 �k0� + h0��

2
A1

2

+ ��0

2
�3 �k0� + h0��

6
A1

3 −
�3

�0
A0

which is satisfied for �A2 /�t1=0 and

�A1

�t2
=

12

5 − 4K0
���3

�0
A0� −

�0

2
�k0� + h0��A1 + ��0

2
�2 �k0� + h0��

2
A1

2

− ��0

2
�3 �k0� + h0��

6
A1

3	
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This is the order �1 correction to the dominant solution and
determines the long term behavior of A1, the amplitude of �1�x , t�.
For H���
0 this evolution equation reduces to that obtained by
Quinn and Pelesko �6�.

This equation may be represented as

�A1

�t2
= c��0�3 − �1A1 + �2A1

2 − �3A1
3� �6�

where

�0 =
A0

�0
, �1 =

�0

2
�k0� + h0��

�2 = ��0

2
�2 �k0� + h0��

2
, �3 = ��0

2
�3 �k0� + h0��

6

and the quantity c=12/ �5−4K0� may be scaled to unity by an
appropriate time transformation. Physically the response of A1
determined from Eq. �6� represents the O��� correction to the
thermal gradient of the rod at the neutrally stable stationary state,
as defined by A0 �cf. Eq. �5��. At the wall �x=0� the nondimen-
sional temperature is held fixed so that as A1 increases the tem-
perature at the sliding surface increases as well. Equilibrium so-
lutions for A1 correspond to stationary thermal gradients in the
rod.

For �3�0, the analysis of Eq. �6� is identical to that contained
in Quinn and Pelesko �6� and was shown to possess a generic fold
type bifurcation near the neutrally stable state. In contrast, for
�3=0, the system undergoes a saddle-node bifurcation as the bi-
furcation parameter �3 is varied, representing the coalescence of
equilibria described by Ciavarella et al. �4�. The equilibrium loca-
tions are given as A1
	 with

	1,2 =
�1

2�2
±�� �1

2�2
�2

−
�0�3

�2

which only exist for

�0�3

�2

 � �1

2�2
�2

As illustrated in Fig. 1, when this inequality is satisfied a pair of
equilibria exist with one stable and the other unstable �for �3�4

in the figure�. In the contrary case, no equilibrium solutions exist
and for �2�0 ��2�0� the thermal gradient increases �decreases�
without bound. Recall that unbounded growth in the thermal gra-
dient corresponds to unbounded growth in the contact pressure. As
�3 varies near this neutrally stable state, the pair of equilibria
undergoes a saddle-node bifurcation, occurring at �3=4 in the
figure.

Near the saddle-node bifurcation ��3=0�, provided the equilib-
rium points exist, Eq. �6� is separable and may be solved as

A1�t2� =
	1�A1�0� − 	2�e�	2−	1��2t2 − 	2�A1�0� − 	1�

�A1�0� − 	2�e�	2−	1��2t2 − �A1�0� − 	1�

As illustrated in Fig. 2, for a pair of real roots �	1�	2� with
�2�0, if A�0��	1 the solution exponentially approaches 	2 as t2
increases. For A�0��	1 the solution to this equation is singular
and increases without bound in finite time t2,b, given as

t2,b =
1

�	2 − 	1��2
ln�A1�0� − 	1

A1�0� − 	2
�

In Fig. 1, initial conditions that grow unbounded lie in the
hatched region while all other initial states approach the stable
equilibrium branch. The arrows denote the evolution of initial
conditions. Recall however that Eq. �6� is only valid for O�1�
values of A1, so that the predictions of this equation cannot be
trusted to reflect the behavior of the original thermoelastic system
for A1=O�1/��, though the solution to the original model is ex-
pected to move away from the unstable state and as the thermal
gradient increases can lead to seizure �4�. The solution for �2
�0 is equivalent to the former through a time reversal, so that the
bounded solution approaches 	1 and the unbounded solution oc-
curs for A1�0��	2.

3 Conclusions
A model for thermoelastic sliding contact was subjected to a

multiple scales analysis to uncover its nonlinear behavior near a
neutrally stable state. The analysis reveals a combination of the
contact resistance and frictional intensity that describes the ge-
neric unfolding of this critical state and its associated bifurcations.
Specifically, in a neighborhood of the saddle-node bifurcation
identified through this analysis, the system contains a pair of equi-
librium states, one of which is stable while the remaining is un-
stable. One consequence of the topology of this system is that
when this pair of equilibria exists a large region of initial condi-
tions grow and leave this neighborhood. In addition, as this pair
coalesces in the saddle-node bifurcation, all initial conditions in
this neighborhood evolve away from this region. This generalizes

Fig. 1 Bifurcation diagram „�1 / „2�2…=1.00, �0 /�2=0.25, �2>0….
Stable equilibrium solutions are denoted by the solid line, while
the dashed branch is unstable. The arrows denote the general
evolution of initial conditions and in the shaded region initial
conditions grow unbounded. The location of the saddle-node
bifurcation is marked with the open circle. Finally, the response
shown in Fig. 2 occurs for the dotted line at �3=3.00.

Fig. 2 Solutions for �1,2= ˆ1.5,0.5‰ „�0=0.25, �1=2.00, �2=1,
�3=3.00…. The equilibrium solutions are shown as thick lines
„solid—stable, dashed—unstable….

Journal of Applied Mechanics MAY 2007, Vol. 74 / 597

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



the stability criteria presented by Ciavarella et al. �4� for frictional
heating that is proportional to contact pressure. In particular, this
analysis identifies the quantity

K��� + H��� =
1 + F���R���

1 + R���

which describes the bifurcation of equilibria, analagous to the role
of the reciprocal contact resistance in the absence of frictional
sliding �6�.

It must be emphasized that the present analysis is concerned
with the behavior of the system in a region localized around the
aforementioned neutrally stable state. Thus solutions that grow
unbounded in this model correspond to solutions that evolve away
from their initial state. As described by Ciavarella et al. �4�, under
general conditions stable and unstable steady-state solutions alter-
nate. In their analysis, below some critical sliding speed the out-
lying states were stable and all initial conditions lead to steady-

state sliding. However, above the identified critical speed one of
the outlying equilibria was unstable. In this case, initial conditions
that are predicted to evolve away from the neighborhood of the
neutrally stable state can possibly lead to seizure.
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The wrong figure was used for Fig. 1 of the subject paper �1�. Instead, this Fig. 1 should have been used, as was pointed out in the galley
proof corrections sent to ASME on December 23, 2003.
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Fig. 1 Schematic of shell deformation
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